The

The Fiducialisation for the next LHC magnet

generations

P. Bestmann , J. Mees, J-F. Fuchs, CERN, GENEVA, SWITZERLAND

From LTD500 + AXYZ towards AT930 + SpatialAnalyzer

- ► The fiducialisation of the LHC Cryomagnets is a well established process since 2003
 - ► LEICA LTD 500 Series Instruments
 - ► LEICA AXYZ software for the acquisition
 - ► CGC (Cryomagnet Geometrical Calculation) for the data treatment
- Current CGC software is written in Microsoft VB6
- Collaborating with LEICA AXYZ
- Not connected to the Databases
- Hardcoded references and rigid structure

- ► LEICA AT 930 Instruments
- SpatialAnalyzer software for data acquisition
- CGC is not compatible with the new Instrumenst and Software
- ► The new CGC# is written in C#
- Collborating with Spatial Analyzer
- Directly connected to the Databases
- ► Fully configurable for magnet specifications
- Extensible to new future magnet types

Requirements

- ► The new CGC# should be open and configurable for new magnet types avoiding the rigid structure and disadvantages of the existing version.
 - Collaboration with Spatial Analyzer
 - Defined universal interface with Spatial Analyzer
 - Access to all calculation and analysis functionalities
 - Universal Datatype for the magnet definition
 - Configurable XML Files used for magnet and measurement definitions
 - Direct connection to Databases with defined universal interface

Architectural Layout

Universal Data Structure

- A new universal data structure is needed to stay flexible for future magnet types.
- ▶ It does not matter anymore how many flanges, beamtubes or fiducials a magnet has.
- ► It does not matter anymore how the points and point groups are named.
- XML files are used for the:
 - Magnet type definition
 - Measurement profile
 - Theoretical parameters

Collaboration with SA

- Clear separation of SA from the core program
- ► The SA measurement Plans (MP scripts) are used for the data acquisition
- ► The calculations needs more flexibility to cope with the different magnet types
 - Development of a SpatialAnalyzerController .NET class library
 - Encapsulating all needed MP commands
- ► The calculation logic calls individual MP commands as needed along the calculation process
- No SA specific code inside the core modules of CGC#

What's next?

- Implementation of Database upload
 - ► The program exchanges a full featured set of data with a internal PLSQL database package
 - ► The PLSQL package is responsible for the distribution of the results in the different DB tables
 - Making CGC# fully independent from the DB layout
- Integration of all magnet types is still to be done
- So far the programm was tested with LHC dipoles
 - More tests with other types to be done

