Alignment and Deformation for Cryostat of CADS Injector II

Jiandong Yuan, Lizhen Ma, Yuan He, Bin Zhang, Juihui Zhang, Guozhen Sun

Presenter: Jiandong Yuan

Institute of Modern Physics, Chinese Academy of Science (IMP, CAS)

2018.10

Email: yuanjiandong@impcas.ac.cn
Outline

1 CADS/CiADS Introduction
2 Cryostat in IMP,CAS
3 Alignment methods
4 Simulating Calculation
5 Monitoring Analysis
6 Results Discussion
7 Conclusion
As a front-end demo facility of CiADS, CADS contains ECR Ion source, LEBT, RFQ, MEBT, Cryostat and HEBT. On June 5 to 7, 2017, CADS Injector II realized the pulse proton beam energy of 26.1 MeV, pulse current of 12.6 mA. And CADS achieved continuous wave proton beam energy of 25.0 MeV, continuous wave high power proton current of 150~200 uA.
1.2 CiADS Introduction

The CiADS accelerator is capable of transmuting radioactive nuclear wastes and meanwhile producing energy in a clean and safe way, aiming to produce a maximum design current of 15 mA at the 1.5 GeV energy with an operating frequency of 162.5 MHz. CiADS consists of 250 quadrupoles, 8 dipoles, 29 cryostats, 4 RFQ, 1 spallation target and 1 subcritical reactor.
2.1 Cryostat in IMP,CAS

CADS injector II project includes four cryostats. The first three cryostats were developed by IMP,CAS. The 4th cryostat was developed by IHEP,CAS. Their alignment will be carried out at room temperature first, and then after the contraction, the position error of the cavities and magnets shall be within ±0.5mm.
2.2 Alignment Tolerance in IMP, CAS

<table>
<thead>
<tr>
<th>Errors</th>
<th>Displacement</th>
<th>Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dx(mm)</td>
<td>Dy(mm)</td>
</tr>
<tr>
<td>BPM</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Solenoid</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Cavity</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CM</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Because of the requirements of high reliability and low beam losses, the tolerance of alignment are very strict (4K).
2.3 Alignment Process in IMP,CAS

- Offline alignment and monitoring
 - Single component’s calibration
 - Bundle component's calibration

- Control Network

- Online alignment

HWR

BPM+Solenoid
3 Cryostat Alignment Methods

<table>
<thead>
<tr>
<th>COUNTRIES</th>
<th>LAB</th>
<th>Installment Instruments</th>
<th>Monitoring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>DESY</td>
<td>Laser Tracker, Portable CMM</td>
<td>Wire Position Monitor</td>
</tr>
<tr>
<td></td>
<td>GSI</td>
<td>Laser Tracker?</td>
<td>Laser Tracker</td>
</tr>
<tr>
<td>USA</td>
<td>SLAC</td>
<td>Micro Alignment Telescope, Laser Tracker</td>
<td>Wire Position Monitor</td>
</tr>
<tr>
<td></td>
<td>Fermi</td>
<td>Theodolite, Laser Tracker</td>
<td>Wire Position Monitor</td>
</tr>
<tr>
<td></td>
<td>MSU</td>
<td>Portable CMM, Laser Tracker</td>
<td>Wire Position Monitor</td>
</tr>
<tr>
<td></td>
<td>Argonne</td>
<td>Theodolite, Laser Tracker</td>
<td>Micro Alignment Telescope, Cryoscanner?</td>
</tr>
<tr>
<td></td>
<td>Jefferson</td>
<td>Theodolite, Level, Laser Tracker, Portable CMM</td>
<td>Micro Alignment Telescope</td>
</tr>
<tr>
<td></td>
<td>SNS</td>
<td>Theodolite...</td>
<td>Micro Alignment Telescope</td>
</tr>
<tr>
<td>ITALY</td>
<td>INFN</td>
<td>Laser Tracker, Total Station</td>
<td>Wire Position Monitor</td>
</tr>
<tr>
<td></td>
<td>ELETTRA</td>
<td>Laser Tracker, Portable CMM</td>
<td>Wire Position Monitor</td>
</tr>
<tr>
<td>JAPAN</td>
<td>KEK</td>
<td>Laser Tracker, Level, Theodolite, Portable CMM</td>
<td>White Light Interferometer, Wire Position Monitor</td>
</tr>
<tr>
<td>FRANCE</td>
<td>SPIRAL2</td>
<td>Laser Tracker, Total Station</td>
<td>Micro Alignment Telescope</td>
</tr>
<tr>
<td></td>
<td>CERN</td>
<td>Laser Tracker, Total Station</td>
<td>Brandeis CCD Angle Monitor</td>
</tr>
<tr>
<td>CANADA</td>
<td>TRIUMF</td>
<td>Laser Tracker, Portable CMM</td>
<td>Wire Position Monitor</td>
</tr>
<tr>
<td>CHINA</td>
<td>IHEP</td>
<td>Laser Tracker</td>
<td>Wire Position Monitor</td>
</tr>
<tr>
<td></td>
<td>IMP</td>
<td>Laser Tracker</td>
<td>Micro Alignment Telescope</td>
</tr>
</tbody>
</table>
4.1 Simulating

The max stress (205.9 MPa) is located at the position of the organic glass. The peak stress value is 183 MPa appears in the two reinforcing bars of the connected stiffeners. The equivalent stress of the main vacuum vessel without organic glass is lower than the allowable stress of the corresponding materials (198 MPa of 316 L stainless steel).

Tab. 1 The boundary conditions, loads and their acting position of the vacuum deformation

<table>
<thead>
<tr>
<th>NO</th>
<th>Boundary Conditions and Loads</th>
<th>Acting Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The four bottom supports were fixed</td>
<td>Four bottom supports</td>
</tr>
<tr>
<td>2</td>
<td>Integral Gravity (1.5 tons, 750 kg per post)</td>
<td>The center of the two posts (G10)</td>
</tr>
<tr>
<td>3</td>
<td>Atmospheric Pressure (101.3 KPa)</td>
<td>The six external surface of the vacuum chamber</td>
</tr>
</tbody>
</table>
The vacuum deformation occurs mainly in the central area around the horizontal vertical and longitudinal zone of vacuum chamber were 0.53, 1.24 and 1.06 mm respectively. Furthermore the central region is larger than the lateral area. In the horizontal and longitudinal direction, the deformation of the side plate presents an obvious symmetry and equivalence. While in the vertical direction, the max deformation (1.24 mm) occurs in the bottom of the vacuum chamber on account of the lacking of the reinforced stiffeners. However, the max deformation of the top cover plate (1.06 mm) appears mainly in the center of the two posts.
4.2 Cryo-Simulation

As shown in Tab. 2, the boundary conditions and load \cite{28} contain a self-gravity of the cold mass assembly, a distributive load of temperature, a force of the cold mass assemblies and the top suspending rods.

Tab. 2 The boundary conditions, loads and their acting position of the cryo-deformation

<table>
<thead>
<tr>
<th>NO</th>
<th>Boundary Conditions and Loads</th>
<th>Acting Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The four rods were fixed</td>
<td>Four top suspending rods</td>
</tr>
<tr>
<td>2</td>
<td>Integral Self-Gravity (1.5 tons, 750 kg per post)</td>
<td>The center of the posts (G10)</td>
</tr>
<tr>
<td>3</td>
<td>Cold mass Temperature (4K)</td>
<td>The center of the cold mass</td>
</tr>
<tr>
<td>4</td>
<td>Rods Temperature (295K)</td>
<td>Four top suspending rods</td>
</tr>
</tbody>
</table>

Fig. 4 Temperature Simulation (Color online)
Simulating Cryo-Deformation

According to the mechanical characteristics of cold mass and the simulated results (above pictures), the solenoid and HWR cavity were contracted 0.8 mm in Horizontal and risen 2.98 mm in Vertical direction, respectively.

Fig. 5 Cryo-Simulation (Color online)
5.1 Vacuum Deformation Monitoring

The monitored vacuum deformations are central 0.66 mm in the horizontal direction, 1.32 mm in vertical direction and 0.89 mm in longitudinal direction.

Fig. 6 vacuum deformation monitoring (DX: horizontal; DY: vertical; DZ: longitudinal)
5.2 Cryo-deformation Monitoring

The cold mass was contracted 0.8 mm in horizontal and 2.87 mm in vertical direction.

Fig. 7 Cryo-deformation monitoring
As shown in Tab. 3, the differences of vacuum deformation between simulated and monitored are 0.13 mm in the horizontal direction, 0.08 mm in the vertical direction and 0.17 mm in the vertical direction, respectively.

The differences of cryo-deformation between simulated and monitored are 0.03 mm in horizontal and 0.11 mm in vertical direction on average, respectively.
7 Conclusions

1. The simulated vacuum and cryo-deformation shows a good agreement with the measured values.
2. The cryo-deformation is strongly linked with the vacuum negative pressure, temperature field and the structure of the cryostat.
3. The aligned accuracy fulfilled the requirements and the aligned results guaranteed the success of cw protons.
References

References

[17] Li Wang, Sen Sun, Shuhua Wang, et al. design report of single test cryostat and control valve box in low temperature [R]

That is all!
Thank you for your kind attention!
First and foremost, suspension structure is the simplest but not the best structure for cryostat especially when the cryostat has stringent alignment requirements\cite{5}. Furthermore, the facility for rare isotope beams of Michigan State University has proven that the alignment of the bottom-up structure is more efficient than the suspend structure of cryostat\cite{34-35}. Last but not least, since the bottom of the internal cooling mass has no direct contact with the external vacuum chamber of the suspend style cryostat, the cooling mass supported only by one force coming from the post in the vertical direction\cite{36-37}. To sum up, we believe that the bottom-up structure is more stable than the suspend structure for cryostat.