
Parquet data format performance

Jim Pivarski

Princeton University – DIANA-HEP

February 21, 2018

1 / 22



What is Parquet?

1974 HBOOK tabular rowwise FORTRAN first ntuples in HEP
1983 ZEBRA hierarchical rowwise FORTRAN event records in HEP
1989 PAW CWN tabular columnar FORTRAN faster ntuples in HEP
1995 ROOT hierarchical columnar C++ object persistence in HEP
2001 ProtoBuf hierarchical rowwise many Google’s RPC protocol
2002 MonetDB tabular columnar database “first” columnar database
2005 C-Store tabular columnar database also early, became HP’s Vertica
2007 Thrift hierarchical rowwise many Facebook’s RPC protocol
2009 Avro hierarchical rowwise many Hadoop’s object permanance and

interchange format
2010 Dremel hierarchical columnar C++, Java Google’s nested-object database

(closed source), became BigQuery
2013 Parquet hierarchical columnar many open source object persistence,

based on Google’s Dremel paper
2016 Arrow hierarchical columnar many shared-memory object exchange

2 / 22



What is Parquet?

1974 HBOOK tabular rowwise FORTRAN first ntuples in HEP
1983 ZEBRA hierarchical rowwise FORTRAN event records in HEP
1989 PAW CWN tabular columnar FORTRAN faster ntuples in HEP
1995 ROOT hierarchical columnar C++ object persistence in HEP
2001 ProtoBuf hierarchical rowwise many Google’s RPC protocol
2002 MonetDB tabular columnar database “first” columnar database
2005 C-Store tabular columnar database also early, became HP’s Vertica
2007 Thrift hierarchical rowwise many Facebook’s RPC protocol
2009 Avro hierarchical rowwise many Hadoop’s object permanance and

interchange format
2010 Dremel hierarchical columnar C++, Java Google’s nested-object database

(closed source), became BigQuery
2013 Parquet hierarchical columnar many open source object persistence,

based on Google’s Dremel paper
2016 Arrow hierarchical columnar many shared-memory object exchange

2 / 22



Developed independently to do the same thing

Google Dremel authors claimed to be unaware of any precedents,
so this is an example of convergent evolution.

wings are not limbs wings are arms wings are hands

3 / 22



Feature comparison: ROOT and Parquet

ROOT

I Store individual C++ objects rowwise
in TDirectories and large collections of
C++ objects (or simple tables)
rowwise or columnar in TTrees.

I Can rewrite to the same file, like a
database, but most users write once.

I Selective reading of columns (same).

I Cluster/basket structure (same).

I Plain encodings, one level of depth
(deeper structures are rowwise).

I Compression codecs: gzip, lz4, lzma,
zstd (under consideration)

Parquet

I Only store large collections of
language-independent, columnar
objects. The whole Parquet file is like
a single “fully split” TTree.

I Write once, producing an immutable
artifact.

I Selective reading of columns (same).

I Row group/page structure (same).

I Highly packed encodings, any level of
depth (logarithmic scaling with depth).

I Compression codecs: snappy, gzip, lzo,
brotli, lz4, zstd (version 2.3.2)

4 / 22



Implementation comparision: ROOT and Parquet (1)

ROOT

I Metadata and seeking through the file
starts with a header.

I Header must be rewritten as objects
(including baskets) accumulate.

I Failure is partially recoverable, but
writing is non-sequential.

I Also facilitates rewriting (use as a
database).

Parquet

I Metadata and seeking through the file
starts with a footer.

I Data are written sequentially and seek
points are only written at the end.

I Failure invalidates the whole file, but
writing is sequential.

I Parquet files are supposed to be
immutable artifacts.

5 / 22



Implementation comparision: ROOT and Parquet (2)

ROOT

I Layout of metadata and data
structures are specified by streamers,
which are saved to the same file.

I Streamer mechanism has built-in
schema evolution.

I Data types are C++ types.

I Objects in TTrees are specified by the
same streamers.

Parquet

I Layout of metadata and data
structures are specified by Thrift, an
external rowwise object specification.

I Thrift has schema evolution.

I Simple data types are described by a
physical schema, related to external
type systems by a logical schema.

I Thrift for metadata, schemas for
data— no unification of data and
metadata.

6 / 22



Implementation comparision: ROOT and Parquet (3)

ROOT

I Contiguous data array accompanied by:

I navigation array: pointers to the start
of each variable-sized object.

I Permits random access by entry index.

Parquet

I Contiguous data array accompanied by:
I definition levels: integers indicating

depth of first null in data; maximum
for non-null data.

I repetition levels: integers indicating
depth of continuing sub-list, e.g. 0
means new top-level list.

I Definition levels even required for non-
nullable data, to encode empty lists.

I Schema depth fixes maximum
definition/repetition values, and
therefore their number of bits.

I Must be unraveled for random access.

7 / 22



Implementation comparision: ROOT and Parquet (4)

ROOT

I Data are simply encoded, by streamers
or as basic C++ types (e.g. Char t,

Int64 t, float, double).

Parquet

I Integers and booleans with known
maxima are packed into the fewest
possible bits.

I Other integers are encoded in
variable-width formats, e.g. 1 byte up
to 127, 2 bytes up to 16511,
zig-zagging for signed integers.

I Dynamically switches between run
length encoding and bit-packing.

I Optional “dictionary encoding,” which
replaces data with a dictionary of
unique values and indexes into that
dictionary (variable-width encoded).

8 / 22



Implementation comparision: ROOT and Parquet (5)

ROOT

I Granular unit of reading and
decompression is a basket, which may
be anywhere in the file (located by
TKey).

I Entry numbers of baskets may line up
in clusters (controlled by AutoFlush).
Clusters are a convenient unit of
parallelization.

Parquet

I Granular unit of reading and
decompression is a page, which must
be contiguous by column (similar to
ROOT’s SortBasketsByBranch).

I Entry numbers of columns (contiguous
group of pages) must line up in row
groups, which is the granular unit of
parallelization.

9 / 22



File size comparisons

10 / 22



Parameters of the test (1)

Datasets: 13 different physics samples in CMS NanoAOD.

Non-trivial structure: variable length lists of numbers, but no objects.

ROOT: version 6.12/06 (latest release)

I Cluster sizes: 200, 1000, 5000, 20 000, 100 000 events
I Basket size: 32 000 bytes (1 basket per cluster in all but the largest)
I Freshly regenerated files in this ROOT version: GetEntry from the

CMS originals and Fill into the datasets used in this study.

Parquet: C++ version 1.3.1 inside pyarrow-0.8.0 (latest release)

I Generated by ROOT → uproot → Numpy → pyarrow → Parquet,
controlling array size so that Parquet row groups are identical to
ROOT clusters, pages to baskets.

I Parquet files preserve the complete semantic information of the
original; we can view the variable length lists of numbers in Pandas.

11 / 22



Parameters of the test (2)

The purpose of the ensemble of 13 physics samples is to vary probability distributions:
e.g. Drell-Yan has a different muons-to-jets ratio than tt̄.

However, these samples also differ in total content (number of events, number of
particles), which is not relevant to performance.

Each sample is divided by its “näıve size,” obtained by saving as Numpy files:

I Each n byte number in memory becomes an n byte number on disk.

I Each boolean in memory becomes 1 bit on disk (packed).

I No compression, insignificant metadata (<1 kB per GB file).

Different conditions (cluster sizes, compression cases) and formats (ROOT, Parquet)
have the same normalization factor for the same sample.

Normalized sizes above 1.0 are due to metadata and overhead; below 1.0 due to
compression or packed encodings.

12 / 22



Normalized file sizes versus cluster/row group size

ROOT uncompressed Parquet uncompressed ROOT gzip Parquet gzip

Uncompressed Parquet is smaller and less variable than ROOT, but gzip-compressed are similar.
13 / 22



Parquet’s dictionary encoding is like a compression algorithm

ROOT gzip
Parquet uncompressed

with dict-encoding ROOT lzma Parquet gzip

14 / 22



Are NanoAOD’s boolean branches favoring Parquet? (No.)

601 + 21 of NanoAOD’s 955 branches are booleans (named HLT * and Flag *), which
unnecessarily inflate the uncompressed ROOT size (8 bytes per boolean).

Highest cluster/row group (100 000 events), average and standard deviation sizes:

all branches without trigger

ROOT Parquet ROOT Parquet

uncompressed ∗1.48± 0.16∗ ∗1.10± 0.02∗ 1.32± 0.11 ∗1.10± 0.02∗

dictionary encoding 0.44± 0.02 0.42± 0.01

lz4 0.60± 0.03 0.58± 0.03

gzip 0.45± 0.01 0.36± 0.01 ∗0.45± 0.01∗ 0.37± 0.01

lzma 0.30± 0.01 0.29± 0.01

(∗not copy-paste errors)

The triggers alone are not responsible for the large ROOT file sizes (and variance).
15 / 22



What about dropping the navigation arrays? (with TIOFeatures)

Last year, we predicted 10–30% improvements if we drop these arrays, depending on
compression algorithm (lzma had the least to gain, lz4 the most).

Highest cluster/row group (100 000 events), average and standard deviation sizes:

ROOT default ROOT no navigation Parquet

uncompressed 1.48± 0.16 1.20± 0.07 1.10± 0.02

gzip 0.45± 0.01 0.35± 0.01 0.36± 0.01

lzma 0.30± 0.01 0.27± 0.01

lz4 0.60± 0.03 0.41± 0.01

dictionary encoding 0.44± 0.02

Dropping navigation arrays is a little better than predicted last year and brings
ROOT-gzip exactly in line with Parquet-gzip. However, ROOT-lz4 is about the same
as uncompressed Parquet with dictionary encoding.

16 / 22



Throughput comparisons

17 / 22



ROOT reading rate / Parquet reading rate: uncompressed

ROOT is much faster than Parquet-C++ for small cluster/row group sizes, but the
difference levels out at high cluster/row group sizes.

18 / 22



ROOT reading rate / Parquet reading rate: both gzipped

The slope with respect to cluster/row group size is less pronounced when both are
gzipped, but still ROOT is several times faster.

19 / 22



ROOT reading rate (lz4) / Parquet reading rate (dict-encoded)

Decoding lz4 in ROOT is about as fast as decoding Parquet’s dictionary encoding
(given large cluster/row group sizes), so there’s no size vs speed advantage.

20 / 22



Throughput summary

Highest cluster/row group (100 000 events), average and standard deviation times to
read 10 branches (seconds):

ROOT Parquet

cold cache warm cache cold cache warm cache

uncompressed 0.6± 0.2 0.4± 0.2 1.1± 0.3 1.0± 0.3

gzip 1.6± 0.5 1.4± 0.4 3.1± 0.9 3.1± 0.9

lzma 12.2± 3.7 12.1± 3.7

lz4 1.4± 0.4 1.3± 0.4

dictionary encoding 1.0± 0.3 1.0± 0.3

For large cluster/row groups, ROOT 6.12/06 is twice as fast as Parquet-C++ 1.3.1.

21 / 22



Summary: Parquet’s encodings yield smaller and slower files

0.1

1

10

100

0.1 1 10 100

R
ea

d 
10

 b
ra

nc
he

s 
[s

ec
]

File size [GB]

Highest cluster/row group (100000 events), warmed cache

uncompressed ROOT
lz4 ROOT

gzip ROOT
lzma ROOT

uncompressed Parquet
dict-encoded Parquet

gzip Parquet

. . . like compression

22 / 22


