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Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units 

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code 
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way
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ROOT Output Serial Bottlenecks 
Output file compression is the biggest bottleneck for CMS production jobs 

• ROOT accumulates entries in branch buffers
• When the # of entries reaches a configurable threshold, the branch buffers are 

compressed and written to disk
• Compression is, by default, serial in two respects:

- Branch buffers are compressed in a single thread 
- The TFile can’t be written to while compression and writing is in process 

• Implicit Multi-Threading (IMT) addresses the first
- IMT parallelizes branch buffer compression into TBB tasks 

• ParallelPoolOutputModule (PPOM) is meant to address the second
- PPOM keeps a pool of output TBufferMergerFiles (derived from TMemFile) 
- Output is written to the available TBufferMergerFile with the most entries 
- Full TBufferMergerFiles are copied to a buffer and written by an auxiliary thread
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IMT in Schematic Form
IMT takes advantage of  threads that would otherwise stall 

• IMT creates TBB tasks for compressing branch buffers
• TBB tasks are queued on the PoolOutputModule’s thread’s task queue
• If another thread has no work on its task queue, it will “steal” work from the 

PoolOutputModule queue
- This invisible is to the framework & stall monitor—they can’t distinguish idle threads from 

threads gainfully employed compressing branch buffers 
- IMT can’t use threads that are blocked (e.g., on a mutex)
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ParallelPoolOutputModule Schematic
ParallelPoolOutputModule creates TBufferMergerFiles on demand 

• limited::OutputModule to limit the # of TBufferMergerFiles created
- Framework needs to know about the limit so it can schedule accordingly 

• Always fill the available TBufferMergerFile with the most entries
- Avoids synchronization effects, minimizes tail effects, approximates serial ordering 

• Branch buffer compression happens on the PPOM thread
- Possibly using IMT—can lead to non-trivial interactions
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Potential TBufferMerger Issues
Several issues were found from a design review: 

• The output thread is not managed by the framework/TBB
• If the merge thread can’t keep up, the queue can grow without bound

- Nothing stops the worker threads from adding new entries onto the queue 

These are all OK if the merge operation takes negligible time 
• OK for MINIAOD, issues found with AOD & RECO
• Due to TTree AutoSave, which allows partial recovery of files from crashed jobs

- AutoSave rewrites the list of branch keys, which grows with the number of branch baskets 
- Compression of the branch keys can take significant CPU time 

• PoolOutputModule turns off AutoSave entirely
- But apparently this isn’t currently possible for the TFileMerger 
- This is wasted CPU time for us since we don’t try to recover output files from crashed jobs
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Issue Mitigation
Several steps taken to mitigate the issues: 

• ROOT made some internal changes to reduce the AutoSave frequency and remove 
mutexes

• AutoSave frequency depends on the merge operation frequency
- Merge the TMemFiles in bunches 
- Increase the event AutoFlush size (also improves compression) 
- Both these measures increase memory “hoarding” 

• Use a faster compression algorithm for AutoSave
- Data use the TMemFile compression settings 
- AutoSave uses the the TMergeFile compression settings—doesn’t have to be the same! 

• Wrap the merge operation in a lambda that executes in the framework TBB task arena
- Execute the CPU-intensive compression into a framework TBB thread for compatibility with 

framework scheduling 
- Avoid using more resources than we were allocated 
- Lets the framework monitor the queue size and respond if the backlog is too large 
- Need to submit a PR with this change!
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Implementation Status

ParallelPoolOutputModule is mostly implemented 
• Refactored PoolOutputModule so most bookkeeping is shared
• Some metadata merging is still incomplete

TBufferMerger still needs the merge callback change 
• Change allows a wrapper around the merge operation
• Results shown include this change so the CPU accounting is accurate

7



G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units 

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code 
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2018-02-21

Comparison Tests
Test setup: 

• Realistic pileup
- Samples with more realistic pileup, including tests with realistic summer 2017 PU 
- Previous tests used simple no-pileup events that exaggerated output stalls 

• Modified TBufferMerger with wrapper around merge operation
• Writing RECO, AOD and MINIAOD, standard compression levels

- Also tested just AOD and MINIAOD 
• 20-core Haswell E5-2620v3, 8 & 20 threads & streams

Tests: 
• Normal PoolOutputModule with and without IMT
• ParallelPoolOutputModule with and without IMT

- RECO output concurrency 3, AOD  3, MINIAOD  2
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Standard output, no IMT vs w/IMT
9

No IMT w/IMT 
(note scale 

change)



G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units 

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code 
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2018-02-21

Standard output w/IMT vs. parallel merger w/o IMT
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8 thread RECO-AOD-MINIAOD
11

Module Total Loop 
Time

Total Loop 
CPU

Efficiency 
CPU/Real/

thread

Events/
Second RSS # of AOD 

stalls
Total AOD 
stall time

Standard
w/o IMT 4534 33248 0.913 1.10 5244 605 3493

Standard
w/IMT 4197 32878 0.978 1.19 4940 564 976

Parallel 
Merger  
w/o IMT

4292 33810 0.980 1.16 21754 409 205

Best ThroughputMost CPU
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20 thread RECO-AOD-MINIAOD
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Module Total Loop 
Time

Total Loop 
CPU

Efficiency 
CPU/Real/

thread

Events/
Second RSS # of AOD 

stalls
Total AOD 
stall time

Standard
w/o IMT 2283 36688 0.798 2.19 6675 1799 10486

Standard
w/IMT 1921 36158 0.937 2.60 6989 1577 2392

Parallel 
merger
w/o IMT

1900 37393 0.971 2.63 22487 1035 309
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20 thread RECO-AOD-MINIAOD, realistic 2017 PU
13

Module Total Loop 
Time

Total Loop 
CPU

Efficiency 
CPU/Real/

thread

Events/
Second RSS # of AOD 

stalls
Total AOD 
stall time

POM 4009 72144 0.894 1.25 10103 1312 6459

POM w/
IMT 3760 69997 0.928 1.33 10162 1033 1377

Parallel 
POM no 

IMT
3825 71833 0.932 1.31 27949 789 317
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20 thread AOD-MINIAOD, realistic 2017 PU
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Module Total Loop 
Time

Total Loop 
CPU

Efficiency 
CPU/Real/

thread

Events/
Second RSS # of AOD 

stalls
Total AOD 
stall time

POM 4018 68462 0.847 1.24 10207 1413 6687

POM w/
IMT 3875 68676 0.884 1.29 9611 1070 5507

Parallel 
POM no 

IMT
3846 69900 0.902 1.30 11963 523 159
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Conclusions
With realistic pileup 

• IMT and parallel merger give comparable throughput and scaling up to 20 threads
- Fewer, shorter stalls 

• IMT reduces CPU time
- TBB will busy wait during stalls; by stealing those cycles, IMT improves CPU utilization 

• Parallel merger increases CPU time slightly
- Due to extra compression in merger 

• Extrapolate that IMT probably will not provide enough tasks much past 20 threads
- Expect parallel merger to provide better throughput at more than ~32 threads 

• CMS has turned on IMT by default
- It’s a clear win for our current 4 and 8 thread production jobs 

TODO 
• More threads, test on KNL
• Mixed output modules to optimize performance and memory usage

- Standard module w/IMT for sparse RECO + parallel merger for AOD & MINIAOD 
• Larger autoflush size to improve compression and reduce autosave overhead
• Finish off implementation loose ends (metadata merging, throttling) and submit ROOT PR for merge wrapper
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Merge Wrapper
17

void TBufferMerger::RegisterMergerExec(const std::function<void(std::function<void()>)> &f) 
{ 
   if (nullptr == f) { 
      fMergerExec = [](const std::function<void()> &f){ f(); }; // just execute 
   } else { 
      fMergerExec = f; 
   } 
} 

In the TBufferMerger::WriteOutputFile() loop: 

   auto mergefn = [&merger] { merger.PartialMerge(); merger.Reset(); }; 
   fMergerExec(mergefn);

      mergeExec_ = [this](const std::function<void()> &f){ 
        std::promise<void> barrier; 
        auto fwrap = [&]() { 
          auto set_value = [](decltype(barrier)* b) { b->set_value(); }; 
          std::unique_ptr<decltype(barrier), decltype(set_value)> release(&barrier, set_value); 
          f(); // execute the merge, promise barrier is set on exit from the wrapper 
        }; 
        taskArena_->enqueue(fwrap);  // queue the merge operation to the CMS TBB task arena 
        barrier.get_future().wait(); // wait for the promise to complete 
      };

CMS wrapper:


