
CMS Progress on ROOT
Multithreaded Output and IMT

Dan Riley (Cornell) & Chris Jones (FNAL)
ROOT I/O Workshop

2018-02-21

1

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2018-02-21

ROOT Output Serial Bottlenecks
Output file compression is the biggest bottleneck for CMS production jobs

• ROOT accumulates entries in branch buffers
• When the # of entries reaches a configurable threshold, the branch buffers are

compressed and written to disk
• Compression is, by default, serial in two respects:

- Branch buffers are compressed in a single thread
- The TFile can’t be written to while compression and writing is in process

• Implicit Multi-Threading (IMT) addresses the first
- IMT parallelizes branch buffer compression into TBB tasks

• ParallelPoolOutputModule (PPOM) is meant to address the second
- PPOM keeps a pool of output TBufferMergerFiles (derived from TMemFile)
- Output is written to the available TBufferMergerFile with the most entries
- Full TBufferMergerFiles are copied to a buffer and written by an auxiliary thread

2

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2018-02-21

IMT in Schematic Form
IMT takes advantage of threads that would otherwise stall

• IMT creates TBB tasks for compressing branch buffers
• TBB tasks are queued on the PoolOutputModule’s thread’s task queue
• If another thread has no work on its task queue, it will “steal” work from the

PoolOutputModule queue
- This invisible is to the framework & stall monitor—they can’t distinguish idle threads from

threads gainfully employed compressing branch buffers
- IMT can’t use threads that are blocked (e.g., on a mutex)

3

POM

TBB compression tasks

Threads for stalled streams  
“steal” compression tasks

Streams stall waiting
on PoolOutputModule

POM POM POM

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2018-02-21

ParallelPoolOutputModule Schematic
ParallelPoolOutputModule creates TBufferMergerFiles on demand

• limited::OutputModule to limit the # of TBufferMergerFiles created
- Framework needs to know about the limit so it can schedule accordingly

• Always fill the available TBufferMergerFile with the most entries
- Avoids synchronization effects, minimizes tail effects, approximates serial ordering

• Branch buffer compression happens on the PPOM thread
- Possibly using IMT—can lead to non-trivial interactions

4

PPOM
1 active output buffer

PPOM
2 active output buffers

Full output buffer
is copied to auxiliary
merge/output thread

Auxiliary thread queues
a TBB task to perform

the actual merge and write

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2018-02-21

Potential TBufferMerger Issues
Several issues were found from a design review:

• The output thread is not managed by the framework/TBB
• If the merge thread can’t keep up, the queue can grow without bound

- Nothing stops the worker threads from adding new entries onto the queue

These are all OK if the merge operation takes negligible time
• OK for MINIAOD, issues found with AOD & RECO
• Due to TTree AutoSave, which allows partial recovery of files from crashed jobs

- AutoSave rewrites the list of branch keys, which grows with the number of branch baskets
- Compression of the branch keys can take significant CPU time

• PoolOutputModule turns off AutoSave entirely
- But apparently this isn’t currently possible for the TFileMerger
- This is wasted CPU time for us since we don’t try to recover output files from crashed jobs

5

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2018-02-21

Issue Mitigation
Several steps taken to mitigate the issues:

• ROOT made some internal changes to reduce the AutoSave frequency and remove
mutexes

• AutoSave frequency depends on the merge operation frequency
- Merge the TMemFiles in bunches
- Increase the event AutoFlush size (also improves compression)
- Both these measures increase memory “hoarding”

• Use a faster compression algorithm for AutoSave
- Data use the TMemFile compression settings
- AutoSave uses the the TMergeFile compression settings—doesn’t have to be the same!

• Wrap the merge operation in a lambda that executes in the framework TBB task arena
- Execute the CPU-intensive compression into a framework TBB thread for compatibility with

framework scheduling
- Avoid using more resources than we were allocated
- Lets the framework monitor the queue size and respond if the backlog is too large
- Need to submit a PR with this change!

6

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2018-02-21

Implementation Status

ParallelPoolOutputModule is mostly implemented
• Refactored PoolOutputModule so most bookkeeping is shared
• Some metadata merging is still incomplete

TBufferMerger still needs the merge callback change
• Change allows a wrapper around the merge operation
• Results shown include this change so the CPU accounting is accurate

7

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2018-02-21

Comparison Tests
Test setup:

• Realistic pileup
- Samples with more realistic pileup, including tests with realistic summer 2017 PU
- Previous tests used simple no-pileup events that exaggerated output stalls

• Modified TBufferMerger with wrapper around merge operation
• Writing RECO, AOD and MINIAOD, standard compression levels

- Also tested just AOD and MINIAOD
• 20-core Haswell E5-2620v3, 8 & 20 threads & streams

Tests:
• Normal PoolOutputModule with and without IMT
• ParallelPoolOutputModule with and without IMT

- RECO output concurrency 3, AOD 3, MINIAOD 2

8

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2018-02-21

Standard output, no IMT vs w/IMT
9

No IMT w/IMT
(note scale

change)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2018-02-21

Standard output w/IMT vs. parallel merger w/o IMT
10

IMT Parallel
Merger

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2018-02-21

8 thread RECO-AOD-MINIAOD
11

Module Total Loop
Time

Total Loop
CPU

Efficiency
CPU/Real/

thread

Events/
Second RSS # of AOD

stalls
Total AOD
stall time

Standard
w/o IMT 4534 33248 0.913 1.10 5244 605 3493

Standard
w/IMT 4197 32878 0.978 1.19 4940 564 976

Parallel
Merger
w/o IMT

4292 33810 0.980 1.16 21754 409 205

Best ThroughputMost CPU

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2018-02-21

20 thread RECO-AOD-MINIAOD
12

Module Total Loop
Time

Total Loop
CPU

Efficiency
CPU/Real/

thread

Events/
Second RSS # of AOD

stalls
Total AOD
stall time

Standard
w/o IMT 2283 36688 0.798 2.19 6675 1799 10486

Standard
w/IMT 1921 36158 0.937 2.60 6989 1577 2392

Parallel
merger
w/o IMT

1900 37393 0.971 2.63 22487 1035 309

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2018-02-21

20 thread RECO-AOD-MINIAOD, realistic 2017 PU
13

Module Total Loop
Time

Total Loop
CPU

Efficiency
CPU/Real/

thread

Events/
Second RSS # of AOD

stalls
Total AOD
stall time

POM 4009 72144 0.894 1.25 10103 1312 6459

POM w/
IMT 3760 69997 0.928 1.33 10162 1033 1377

Parallel
POM no

IMT
3825 71833 0.932 1.31 27949 789 317

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2018-02-21

20 thread AOD-MINIAOD, realistic 2017 PU
14

Module Total Loop
Time

Total Loop
CPU

Efficiency
CPU/Real/

thread

Events/
Second RSS # of AOD

stalls
Total AOD
stall time

POM 4018 68462 0.847 1.24 10207 1413 6687

POM w/
IMT 3875 68676 0.884 1.29 9611 1070 5507

Parallel
POM no

IMT
3846 69900 0.902 1.30 11963 523 159

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2018-02-21

Conclusions
With realistic pileup

• IMT and parallel merger give comparable throughput and scaling up to 20 threads
- Fewer, shorter stalls

• IMT reduces CPU time
- TBB will busy wait during stalls; by stealing those cycles, IMT improves CPU utilization

• Parallel merger increases CPU time slightly
- Due to extra compression in merger

• Extrapolate that IMT probably will not provide enough tasks much past 20 threads
- Expect parallel merger to provide better throughput at more than ~32 threads

• CMS has turned on IMT by default
- It’s a clear win for our current 4 and 8 thread production jobs

TODO
• More threads, test on KNL
• Mixed output modules to optimize performance and memory usage

- Standard module w/IMT for sparse RECO + parallel merger for AOD & MINIAOD
• Larger autoflush size to improve compression and reduce autosave overhead
• Finish off implementation loose ends (metadata merging, throttling) and submit ROOT PR for merge wrapper

15

BACKUP SLIDES

16

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2018-02-21

Merge Wrapper
17

void TBufferMerger::RegisterMergerExec(const std::function<void(std::function<void()>)> &f)
{
 if (nullptr == f) {
 fMergerExec = [](const std::function<void()> &f){ f(); }; // just execute
 } else {
 fMergerExec = f;
 }
}

In the TBufferMerger::WriteOutputFile() loop:

 auto mergefn = [&merger] { merger.PartialMerge(); merger.Reset(); };
 fMergerExec(mergefn);

 mergeExec_ = [this](const std::function<void()> &f){
 std::promise<void> barrier;
 auto fwrap = [&]() {
 auto set_value = [](decltype(barrier)* b) { b->set_value(); };
 std::unique_ptr<decltype(barrier), decltype(set_value)> release(&barrier, set_value);
 f(); // execute the merge, promise barrier is set on exit from the wrapper
 };
 taskArena_->enqueue(fwrap); // queue the merge operation to the CMS TBB task arena
 barrier.get_future().wait(); // wait for the promise to complete
 };

CMS wrapper:

