Resonance Control in the SRF Cavities

Warren Schappert
P2MAC
26-28 March 2018

In partnership with:
India/DAE
Italy/INFN
UK/STFC
France/CEA/Irfu, CNRS/IN2P3
Cavity Microphonics

- SRF cavities manufactured from thin sheets of niobium and operate with narrow bandwidths
- Mechanical distortion of the cavities can change the resonant frequency requiring more RF power to maintain the gradient
- Providing sufficient margin increases capital and operating costs
Mitigating Microphonics

- Suppressing cavity detuning requires multi-pronged approach including (but not limited to)
 - Cavity/Cryomodule Design
 - Tuner Performance and Reliability
 - Passive Suppression
 - Active Compensation
- PIP-II has very aggressive resonance control specifications

<table>
<thead>
<tr>
<th>Wideband CW</th>
<th>Mode</th>
<th>Current</th>
<th>Frequency</th>
<th>Half Bandwidth</th>
<th>LFD</th>
<th>Peak Detuning</th>
<th>Peak Detuning/BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIEL</td>
<td>e-CW</td>
<td>10</td>
<td>10</td>
<td>1300</td>
<td>220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPIRAL-II</td>
<td>ion CW</td>
<td>11</td>
<td>0.15-5</td>
<td>88</td>
<td>176</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wideband Pulsed</th>
<th>Mode</th>
<th>Current</th>
<th>Frequency</th>
<th>Half Bandwidth</th>
<th>LFD</th>
<th>Peak Detuning</th>
<th>Peak Detuning/BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>XFEL</td>
<td>e-Pulsed</td>
<td>23.6</td>
<td>5</td>
<td>1300</td>
<td>185</td>
<td>550</td>
<td>3</td>
</tr>
<tr>
<td>ESS</td>
<td>p-Pulsed</td>
<td>21</td>
<td>62.5</td>
<td>704</td>
<td>500</td>
<td>400</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Narrowband CW</th>
<th>Mode</th>
<th>Current</th>
<th>Frequency</th>
<th>Half Bandwidth</th>
<th>LFD</th>
<th>Peak Detuning</th>
<th>Peak Detuning/BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEBAF Upgrade</td>
<td>e-CW</td>
<td>20</td>
<td>0.47</td>
<td>1497</td>
<td>20</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>LCLS-II</td>
<td>e-CW</td>
<td>16</td>
<td>0.06</td>
<td>1300</td>
<td>16</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>FRIB</td>
<td>p-CW</td>
<td>20</td>
<td>0.7</td>
<td>322</td>
<td>15</td>
<td>0.47</td>
<td>10</td>
</tr>
<tr>
<td>cERL</td>
<td>p-CW</td>
<td>7.9</td>
<td>0.7</td>
<td>322</td>
<td>15</td>
<td>0.47</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Narrowband Pulsed</th>
<th>Mode</th>
<th>Frequency</th>
<th>Half Bandwidth</th>
<th>LFD</th>
<th>Peak Detuning</th>
<th>Peak Detuning/BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIP-II</td>
<td>p-Pulsed</td>
<td>17.8</td>
<td>2</td>
<td>650</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>
Cavity/Cryomodule Design

- **SSR1 Cavity and tuner design** were completed some time ago
 - Considerable effort has gone into minimizing $\frac{df}{dP}$ for the SSR1 cavities
 - Low $\frac{df}{dP}$ may reduce sensitivity to TAOs
- Design of 650 Cavity/Tuner system is currently underway
 - Effort to minimize LFD
- SSR1 cryomodule design is incorporating lessons learned from LCLS-II
 - Thermally strapping instrumentation lines to reduce TAOs
Tuner Performance and Reliability

• LCLS-II tuner developed in close collaboration with experienced vendors with strong emphasis on reliability
 – PI Encapsulated piezo stacks
 – Phytron cryogenic stepper motors
• Tuner component reliability testing program is ongoing
 – Radiation hardness
 – Piezo heating during pulsed operation
• Cold testing of complete cavity/tuner assemblies is critical
Passive Suppression

- LCLS-II production testing provides important lessons for PIP-II
- Initial microphonics levels were much higher than expected
 - Thermo-acoustic oscillations (TAOs) identified as primary source of detuning
- Over the course of a year cross-disciplinary effort was able to bring levels down to specification
- Effort required multiple cryomodule design modifications during “production” testing
PIP-II Cavity Test Stand Environment

- Considerable effort has gone into eliminating TAOs and other noise sources in the LCLS-II cryogenic system
- No comprehensive effort yet to identify and mitigate noise sources in STC
 - Noise background and valve icing in adjacent HTS would indicate that TAOs are likely present
- Improving the cryogenic system will require time and resources but must be undertaken if test stand resonance control tests are to be taken seriously
- Similar efforts will be required for cryomodule and string test
STC Testing

- Demonstration in the previous year using showed that it was possible to stabilize the SSR1 resonance in pulsed mode to within a factor of 2 (or better) of the specification.
 - Specification may well have been met but it is unclear because of uncertainties in cavity gradient (possible coupler damage)
- Problems with SSR1 production prevented repeating the demonstration this year
 - SSR1 production problems apparently now resolved
- Hope to repeat demonstration during next upcoming SSR1 test
LCLS-II Active Compensation Tests

• TD/Resonance Control group working in collaboration with LCLS-II/LLRF group to implement FNAL developed algorithms on LCLS-II hardware

• LCLS-II tests have given a much better understanding of what will be required for active compensation
 – Now possible to measure cavity transfer function and noise spectrum, automatically generate a compensation filter, and predict the feedback suppression factor

• LCLS-II active compensation tests are ongoing
Pulsed vs CW Operation

- Good results with active control for both pulsed and CW operation
- Range of possibilities between original PIP-II pulsed mode specifications and pure CW operation
 - Some low power CW drive always envisioned to provide continuous sensitivity to detuning
 - Mechanical excitation depends on RF pulse risetime
Feedforward Compensation

- Current LCLS-II noise spectra show a large (~50%) component just below 30 Hz that slowly oscillates
 - Interference between two large induction motors operating
 - One source had been identified as Kinney pump
 - Other needs to be identified
 - Passive suppression may be limited
- DESY has had success using feedforward to compensate for external vibration sources
 - Need to incorporate this capability into PIP-II resonance control hardware
Conclusion

- Resonance stabilization is recognized as a critical consideration in the design of PIP-II
 - Resonance control needs to be part of specifications and review for each component of the machine
- PIP-II production testing has been delayed but is expected to resume shortly
 - Time for resonance control studies allocated during production tests
- In the meantime LCLS-II testing has provided considerable insight to what will be required for both passive suppression and active control of the PIP-II cavities
 - Template for successful collaboration needed during upcoming PIP-II cryomodule tests
 - Passive suppression is critical
 - Active compensation alone will not be adequate
 - Lessons learned are being incorporated into PIP-II design
- Need to adapt our strategy to take into account what we have learned