Advanced Dielectric Wakefield Accelerator Structures

G. Andonian May 10, 2018 FAST/IOTA Collaboration Meeting Fermilab

Outline

- DWA background
- Relevant Issues & research directions
- Advanced structures & applications
 - Bragg boundary
 - Planar geometry
 - Woodpile
 - Beam phase space manipulations
- Conclusion

Dielectric Wakefield Accelerator

 $4N_b r_e m_e c^2$

- Candidate for next-gen adv. Accelerator (GV/m field)
- Simple geometry
- Relativistic beam drives wake in material
- Dependent on structure geometry
- Present day beams naturally scale to sub-mm (THz) structures

Design parameters:
$$a, b, Q, \sigma_z, \varepsilon$$

• Peak field

• Fundamental mode
$$f_{01} = \frac{c}{2\pi} \sqrt{\frac{2\epsilon}{(\epsilon-1)a(b-a)}}$$

 $eE_{z,dec} \approx -$

DWA Applications & Research

- High gradient applications
 - HEP: future machine (GV/m fields)
 - Thompson PRL 100, 214801 (2008)
 - O'Shea Nat Comm 7, 12763 (2016)
 - Light Source
 - A. Zholents Proc FEL14, 993 (2014)
 - Phase Space manipulation
 - Relativistic e-beam diagnostics
 - THz source
- Relevant Research Issues
 - Practically achievable field gradients
 - Breakdown & High field damping
 - Joule heating at high rep rate
 - Beam break up transverse modes
 - Efficiency, TR
 - Materials/cladding composition
 - Alternate geometries (slab, woodpile)

Recent High gradient DWA results

- High field DWA demonstrated (>GV/m) at SLAC FACET
 - 3nC, σz=20μm
 - Cylindrical geometry
 - In long (>15 cm) structures
 - Damping effects (reversible) before reaching breakdown due to high field
- Motivation to explore alternative geometry

O'Shea Nat Comm 7, 12763 (2016)

Bragg boundary DWA

- Motivation:
 - Metal ablation at high fields in first tests
 - Explore alternate geometry with no metal
- Concept:
 - Bragg arrays
 - Alternating multilayer stack (high/low ε)
 - Constructive interference
 - Modal confinement in channel
- Test at BNL ATF
- Bragg DWA
 - SiO₂ (ϵ =3.8) matching layer
 - Bragg layers: SiO₂, ZTA (ε =10.6), 12 periods
 - L = 1cm
 - Gap = 240 μ m

Photo of Bragg array

BNL ATF experimental layout

- CTR interferometer for bunch length/profile reconstruction
- CCR interferometer for spectral characterization
- Out-coupling antenna
- Dipole spectrometer for energy modulation
- Similar setup to FACET experiments and techniques can be used at FAST

Bragg-boundary DWA

- Experiment:
 - Characterize structure modes
- BNL ATF experiment
 - 57MeV, 100pC, σt~1ps
 - CCR spectral analysis
 - Reconstruction algorithm
 - Energy modulation measured
 - Agreement with theory/ simulation (3D Vorpal, CST)
- Results:
 - Bragg reflector performance
 - Modal purity for THz source apps

G. Andonian, et al., PRL 113, 264801 (2014)

Beam Break up

- DWA can sustain GV/m for future machine, but may be limited by BBU
- BBU stems from growth of transverse modes
- Suggested to use external FODO channel
 - C. Li et al., PRSTAB 17, 091302 (2014)
- Suggested to use flat beams with planar structures to mitigate the effect
 - A. Tremaine *et al.*, PRE 56, 7204 (1997)
 - D. Mihalcea et al., PRSTAB 15, 081304 (2012)
 - S. Baturin in prep (2018)

Deflection modes in cylindrical DWA

- Experiment to study effects of deflection modes at SLAC FACET
- HEM modes seen in spectrum + integrated effect on screen ("kick")

Slab DWA with asymmetric beams

- Experiment:
 - Drive slab geometry with elliptical beams
 - measure effects of deflection modes
- Reproducible results across different materials (SiO₂,ZTA, CVD)
- Results: Suppression of effects from transverse wakes for flat beams

Advanced DWA Structure: woodpile

- Build off Bragg and slab results
 - Advanced DWA structures
 - No metals (excessive dissipation into heat)
- Tailor spectrum for reduced coupling to transverse modes (enhance longitudinal)
- Familiar from DLA
 - Extend to DWA
- Engineer spectral content
 - 3D-periodicity gives more control
 - Modes, v_g, ratios
 - Excited modes in bandgap are confined
- Woodpile assembled at UCLA
 - For experiment at BNL ATF
 - 125µm Sapphire rods x 2cm
 - by hand (P. Hoang)

Woodpile simulations

Woodpile parameters

- 125µm x 2cm sapphire rods
- 375µm periodicity in x, and z
- 250µm gap
- Single period structure to understand dynamics
- BNL ATF Beam parameters
 - 57 Mev, $\varepsilon_{\rm N}$ =2 mm-mrad, $\sigma_{\rm z}$ = 250 μ m
 - "round beam": 50:50 μm, 150 pC
 - "elliptical beam" 50: 500 μm, 235 pC
- Many modes in spectra for round beam
 - Boundary conditions require computation
 - Flat beam shows only fundamental

Cross section (beam perspective)

DWA Woodpile experiment

Experiment at BNL ATF .

- CCR spectral characterization methods
- Round beam vs elliptical
- Shows suppression of spectra
- agreement with simulations
- **Results** important •
 - **Design spectrum**
 - Use bunch length to couple to desired longitudinal modes
 - Use beam shape to reduce coupling to transverse modes

-1.1. on axis-

0.4

0.4

---1:1, off axis

-10:1, on axis

---10:1, off axis-

0.35

0.35

0.3

0.3

Pulse shaping: High Transformer Ratios

(arb)

nensity

Signal

- Efficiency of DWA ۲
- TR enhancement from ramped ۲ beams $R = \frac{E_{z,acc}}{E_{z,dec}} \le 2$
 - Triangle distribution
 - Novel: doorstep, double triangles
- Techniques:
 - EEX, laser shaping, mask in dispersive section
- Shaping with self wakes
 - Analogous to bunch train with DWA
 - Antipov PRL 111, 134801 (2013)
- Shaping capabilities essential for TR studies
- Experiment at BNL ATF:
 - "Ramped" beam observed
 - CCR autocorrelation
 - Deflecting cavity

Pulse trains + Longitudinally periodic structures

- Motivation:
 - Confine energy of mode inside structure
 - Near zero group velocity
 - Longitudinal periodicity ε(z)
- OOPIC and HFSS Simulations
 - a = 50 μ m, b = 126 μ m
 - Periodicity = $300 \ \mu m$
 - Used both sinusoidal variance of $\boldsymbol{\epsilon}$ and step
 - Base materials SiO2, diamond (ε =3.8, 10.6)
- 500 GHz structure
 - Mode confinement

Excite mode with 4-pulse train - OOPIC

Standing wave structure seen in sims after beam has passed through structure (OOPIC)

J. B. Rosenzweig, G. Andonian, D. Stratakis, X. Wei

Summary & Future Work

- DWA useful tool for accelerator applications
 - Advanced accelerator, THz source
 - Phase space manipulation, beam diagnostic
- FAST allows opportunity to study in new regime
 - High average current : Charging/ Heating questions
 - High quality bunches : Small/long structures
 - RTFB transform: Flat beam driven planar DWA
- FAST is unique facility for advanced DWA studies
 - Designer structures for fundamental physics
 - Spectra by design + Beam by design
 - Explore limits and possibilities

Acknowledgements: UCLA: S. Barber (LBNL), A. Fukusawa, P. Hoang, B. Naranjo, N. Sudar, O. Williams, J. Rosenzweig, et al. RadiaBeam: F. O'Shea, M. Harrison, A. Murokh, et al., FACET: B. O'Shea, C. Clarke, M. Hogan, V. Yakimenko, et al. U. Chic: S. Baturin, ATF: M. Fedurin, C. Swinson, et al., Work Supported by US DOE HEP