# Beam Instability Issues and Measures at High Intensity Operation of J-PARC RCS

## Pranab K. Saha J-PARC

Fermilab Workshops at MW Rings & IOTA/FAST Collaboration Meeting 7-10 May, 2018



# **Outline:**

- 1. Brief Introduction of J-PARC and the 3-GeV RCS
- 2. Impedance sources in the RCS
- 3. Beam instability due to the Kicker Impedance
- 4. Space Charge effect on the Beam Instability
- 5. Beam instability mitigation at 1 MW beam power and beyond
- 6. Summary and Outlook

### J-PARC KEK & JAEA)

Saha

#### Fast Extraction Neutrino experiment (NU)

3 GeV Rapid Cycling Synchrotron (RCS)

rimental,

400 MeV H<sup>-</sup> Linac

State .

FFF

-8 D

cience Facility

utation

**B**AN

50 GeV Main Ring Synchrotron (MR) [30 GeV at present]

#### Slow Extraction Hadron experiments (HD)



# 1. Introduction of 3-GeVRCS

**Parameter** 

Circumference [m]

Harmonic no, bunches

Protons/pulse (PPP)

Repetition [Hz]



Beam power [MW] 1 Injection Extraction Energy [GeV] 0.4 3  $f_0$  [MHz] 0.614 0.84 ∆p/p (99%)[%] 0.8 0.4  $\tau_{\tau}$  (bunch length) [m] 160 60  $v_{s}$  (synchrotron tune) 0.006 0.0005  $v_x$ ,  $v_y$  (betatron tune) 6.45, 6.42 Variable  $\xi_x$ ,  $\xi_y$  (Nat. chromaticity) Variable -10, -7 B<sub>f</sub> (Bunching factor) 0.47 0.21 -0.05, -0.005 -0.3, -0.03  $\Delta v_{incoh}, \Delta v_{coh}$ 

**To MLF: 0.5 MW** 

Value

348.333

25

2, 2

8.33E13

# *Demonstration of 1 MW beam power*



# *EFFARC* Impedance sources in the RCS

Acceleration of 1 MW power beam was not that much simple.
We had to do a lot of works to mitigate the beam instability caused by the transverse Impedance of the extraction kicker magnets.

The Impedance sources in the machine were carefully addressed, but unfortunately the KM impedance remained untouched.



#### **RCS Vacuum chambers types** and their parameters.

Titanium flanged alumina ceramics vacuum chambers with RF shields were developed.

Courtesy: M. Kinsho



#### Ceramics chamber - picture -Capacitor **Every stripes are jumped** Capacitance : 330 nF RER over the joint area. Ti flange Brazing joint **RF** Shield 3540 mm **TiN coating** Ti sleeve Thickness : 15 nm

# **Ceramic duct properties**

Temperature measurement

- resul Impedance measurements - results -



The temperature for dipole magnet was measured at various point with ramping and at 25 Hz.

◎ The Eddy current heating of the Ti Sleeve and flange was not high.

The longitudinal impedance was measured by single wire method. **O** The impedance at low frequency was very small.

◎ The impedance at higher frequency was also not so big.



## **RCS Kicker Impedance**





# Beam Instability simulations and mitigation methods

R&D studies to reduce the KM impedance are in progress, but long way to go for realistic implementation.

Theoretical works provide overview (threshold) of the beam instability, but realistic strategy for the beam instability suppression should be determined by detailed simulation studies.

- The space charge effect (SC) on the beam instability should be considered seriously.
- -- ORBIT 3D SC code is used. We should determine realistic parameters to accomplish 1 MW beam power.

© We enhanced ORBIT by implementing all realistic time dependent machine parameters:

Injection process, transverse & longitudinal injection paintings, error sources, PS ripples, . . . . and also the KM impedance.



#### Space charge simulation results

The space charge force is controlled by the choice of Einj., rf pattern and LP



#### <mark>Einj: 0.181 GeV</mark>

TP= 100π mm mrad PPP: 4.2E13 (0.5 MW)



 $\Delta v \sim -0.45$  at inj. even with rf 2h + LP. Further increased by using rf 1h only. Particles at  $v_{xy}$ =6 resonances increase. Emittance blowup beyond aperture and huge particle losses with rf 1h. Well mitigated by using rf 2h + LP.

 $\Delta\nu$ = –0.45 corresponds to 1.25E14 ppp (1.5 MW beam power) as  $\Delta\nu\propto$  1/ $\beta^2\gamma^3$ 

P.K. Saha



#### Beam instability up to 0.5 MW



Beam instability occurs even for a beam power exceeding 0.25 MW when the ξ is fully corrected for the entire acc. cycle by SX ac fields.

No instability occurs for ξ fully corrected only at inj. by SX dc fields

#### Simulation results are well reproduced in the measurements.

Beam instability occurs at relativistic energy. -- Beam is stabilized by the SC at lower energy.

The growth rate is higher for Einj. is higher. --The Landau damping effect of the nonlinear SC force is smaller for higher injection energy.



### Beam instability suppression by the SC



Einj. = 0.181 GeV, **SX ac** ( $\xi$  =0) PPP: 4.2E13 (0.5 MW)  $\Delta v / v_s >> 1$  (strong space charge)

Beam instability occurs when the SC effect is reduced by applying dual harmonic rf voltage and also the LP.

However, beam is stable when SC is stronger by omitting 2<sup>nd</sup> harmonic rf voltage and also the LP.



#### Beam instability suppression by the SC

#### How about at lower beam intensity? Beam power: 0.375 MW (3.1E13). $\xi = 0$ , Beam loss with rf 1h: 3%



P.K. Saha et al., The Landau damping effect of the non-linearPRAB 21, 024203 (2018) SC force becomes more effective to stabilize the beam.



The ORBIT code takes **indirect SC** into account, which is important to study the beam instability with SC.

Circular shape perfect conducting wall boundary is defined with radius  $\rho = 0.145$  m.





Beam Instability suppression at 1MW beam power

At 1 MW beam power, the SC effect, especially at lower energy should be sufficiently reduced to mitigate the beam losses.

- $\rightarrow$  Wider  $\Delta p/p$  of the injected beam, apply LP and TP (100 $\pi$  mm mrad)
- $\rightarrow$  Choice of the betatron tunes,  $\xi$  correction, .....

However, reduction of the SC enhance the beam instability at higher energy.

We consider following 3 measures:

(1) Manipulation of the betatron tune  $(v_x)$  during acceleration. (to avoid characteristics (resonances) of the KM impedance)

(2) Further reduction of the DC  $\xi$  correction.

(to enhance the Landau damping)

(3) Smaller  $\Delta p/p$  of the injected beam (should be <0.1%) (same as (2))



6.5

#### Suppression of Beam Instability at 1MW beam power



#### Betatron tune dependence 1 MW beam power



PARC



 $\xi$  dependence at 1 MW



In addition to a proper betatron tune manipulation, the ξ correction of 1/4 or less at injection and **almost no ξ correction at extraction** were utilized to accomplish 1 MW beam power.



### **Recent results**

In the RCS, particular tune choice, smaller transverse painting and SX dc  $\times^{**}$  are required for smaller beam emittance **for the MR**. Beam instability occurs in this case.

Introduced extra  $\xi$  by SX bipolar field.



Fermilab Workshop on MW rings



# Beyond 1 MW beam power

In order to make sure 1 MW beam power to the MLF, even if MR cycle is upgraded from 2.48s to ~1s and also when a 2<sup>nd</sup> target station at the MLF is constructed, **RCS beam power upgrade is** planned to be 1.5 MW.

However, beam instability occurs even if  $\xi$  is not corrected at all. R&D studies to reduce the KM is in progress. The impedance can be reduced by at least a half (Y. Shobuda, IPAC18).





# Summary and outlook

- Transverse Impedance of the KM is a significant beam instability source in J-PARC RCS.
- The ORBIT code was enhanced to cope with all time dependent Parameters for realistic beam instability studies with SC.
- The beam instability suppression by the SC has been studied in detail.
- A proper  $v_x$  manipulation and minimal  $\xi$  corrections were applied to accomplish the designed 1 MW beam power successfully. The simulation results are well reproduced in the measurements.
- KM impedance restricts RCS flexible parameter choice for multi-user operation. R&D studies to reduce the KM impedance are in progress.
   We can achieve 1.5 MW beam power, if the KM impedance is reduced by even a half.

#### Acknowledgement

We acknowledge many of our colleagues for continuous support and encouragement. *M. Kinsho, N. Tani, Y. Watanabe, M. Yamamoto, K. Yamamoto, Y. Irie.*. We thank *Dr. J.A. Holmes of SNS for continuous support on the ORBIT code development.* 





# RCS tune diagram and the operating point at injection.





FIG. 1. Outline structure of the kicker system.

| Numbers                    | 8 (Nos. 1–8)                 |
|----------------------------|------------------------------|
| Maximum repetition rate    | 25 Hz                        |
| Characteristic impedance   | $10 \ \Omega$                |
| PFL                        | Coaxial cable, about 102 m   |
| Load cable                 | Same as PFL, about 130 m     |
| High power switch          | Thyratron CX1193C, e2V Ltd   |
| Maximum output current     | 4 kA                         |
| Operation output current   | 3 kA                         |
| Flattop length             | 840 ns for two beam bunches  |
| Rise time                  | 25 ns (typical)              |
| Jitter                     | Less than 10 ns              |
| Flatness                   | 6% without correction        |
|                            | 2% with correction           |
| Maximum charging voltage   | 80 kV                        |
| Operation charging voltage | 60 kV                        |
| Maximum exciting current   | 8 kA                         |
| Operation exciting current | 6 kA                         |
| Magnet structure           | Distributed parameter line   |
| Magnet core                | Ni-Zn ferrite PE14, TDK Ltd  |
| Magnet gap height          | 153 mm (S-type: No. 3, 4, 5) |
|                            | 173 mm (M-type: No. 2, 6)    |
|                            | 199 mm (L-type: No. 1, 7, 8) |
| Magnet gap width           | 280 mm                       |
| Magnet longitudinal length | 638 mm                       |
| Magnetic field             | 460 G (S-type)               |

TABLE I. Specifications of the RCS kicker system.

410 G (M-type) 360 G (L-type)



#### The characteristic of the present RCS kicker



 On the other hand, <u>the short plates create the resonance structure</u> in the kicker impedance in combination with the coaxial cables.



#### A new scheme to reduce the kicker impedance

- In order to reduce the impedance, one possible solution is inserting a resistor between the coaxial cable and PFN.
  - •Notice that we must retain the benefit of short plates.
  - Thus, the resistor has to be isolated from the PFN, but needs to be seen by a beam.
  - •We need a mechanism to isolate the damping resistor from the pulse current from the PFN.
  - From a mechanical point of view, the easiest way is to insert a <u>diode</u> in front of the resistor.

