Fermilab **ENERGY** Office of Science

Booster Beam Simulations

Yuri Alexahin*, Alex Macridin Fermilab Workshop on Megawatt Rings 7-8 May 2018

Issues & Goals

stage	E_inj (MeV)	Np/batch (e12)	ΔQx/ΔQy
PIP-I	400	4.5	0.25/0.31
PIP-I+	400	5.6	0.31/0.38
PIP-II	800	6.5	(0.36/0.44)*

*) would be with 400MeV injection

Losses at nominal (PIP-I) intensity are ~8%, will increase at high intensity operation (especially with 20Hz reprate)

Simulations goals:

- understand experimental observations
- offer ways of improvement

Tools used:

- Synergia (A. Macridin, E. Stern)
- MADX-SC (Y.A., A. Valishev with a lot of help from F. Schmidt)

HEP Optics Measurements

Measurements performed by K-modulation definitely confirm HEP Optics model (MADX)

‡ Fermilab

Optics Perturbation

The source of the optics perturbation is wellknown: the extraction dogleg created by DC magnets – the strongest effect @ injection.

A number of solutions considered:

- modify the extraction dogleg using pulsed magnets (expensive)
- half-integer resonance correction using quadrupole harmonic circuits
- "flat" optics (Tan)

Optics Functions w/o SC

Fourier Sectra of β -functions

5 5/7/2018 Alexahin | Booster Simulations

200

300

400

s(m)

100

Tracking Simulations

Beam parameters (A. Macridin):

 $ε_{\perp N}^{(r.m.s.)}$ =2.34μm ($ε_{\perp N}^{(95\%)}$ =14π mm·mrad) σ_z= 0.831532m, σ_p/p= 0.00185,

Longitudinal profile is not Gaussian, corrections were made that reduced space charge tuneshifts to 0.28, 0.38 for Np=7.e10/bunch

Synergia simulations w/o dogleg bump

- \Rightarrow still losses due to longitudinal shift in SXL03 position by 4.75m
- \Rightarrow excitation of Qx+2Qy=20
- \Rightarrow can be compensated by tuning other sextupoles

Synergia Simulations

 $Q_x = 0.734 Q_y = 0.82$

n=7e10 pp bunch

 Position of the CPLO3 corrector package is the main culprit for beam loss horizontal chromaticity has a large influence on loss

MADX-SC Simulations for HEP Lattice

no Qx+2Qy correction with Qx+2Qy correction Loss %% 6.80 6.80 24 20 6.75 6.75 16 Qy Qv 6.70 6.70 12 8 6.65 6.65 4 6.60 6,60 6.62 6.64 6.66 6.68 6.70 6.72674 6.76 6.62 6.64 6.66 6.68 6.70 6.72 6.74 6.76 Qx Qx

Losses over 2000 turns as function of bare lattice tunes at nominal Np. Little improvement at Qx=6.7, Qy=6.8: $4.3\% \rightarrow 3.8\%$

MADX-SC Simulations for Flat Lattice 2

Np=5.6e10/bunch

Losses over 2000 turns as function of bare lattice tunes at nominal and PIP-II intensities. Qx+2Qy corrected. At Qx=6.7, Qy=6.8 losses are negligible: $0\% \rightarrow 0.07\%$

🛚 🛟 Fermilab

Loss %%

Tune scan

(low intensity)

Pseudo-flat lattice 2 has smaller vertical 1/2 integer resonance and slightly larger horizontal 1/2 integer resonance. Both pseudo-flat lattices are much improved over HEP lattice.

Pseudo-Flat Optics 2 looks like a victory, but there is no better working point than with HEP lattice at high intensity!

Fermilab

Effect of Image Charges*

Start from Baartman's expansion AIP conference proceedings 448, 56 (1998)

Parallel plates at
$$y = +/-h$$

 $h \oint \frac{\bar{y}}{\bar{y}} \bigoplus \frac{\bar{y}}{\bar{y}} \bigoplus \frac{\bar{y}}{\bar{y}}$
 $U = -2\lambda \log \left| \frac{\sin\left(\frac{\pi y}{2h}\right) - \sin\left(\frac{\pi \bar{y}}{2h}\right)}{1 + \cos\left(\frac{\pi(y + \bar{y})}{2h}\right)} \right|$
 $\frac{E_{yimage}}{4\lambda} \approx \frac{\pi^2}{48} \frac{\check{y}}{h^2} + \frac{\pi^2}{16} \frac{\bar{y}}{h^2} + \frac{\pi^4}{192} \frac{\bar{y}^3}{h^4} + \frac{\pi^4}{128} \frac{\check{y}\bar{y}^2}{h^4} + \frac{\pi^4}{256} \frac{\check{y}^2 \bar{y}}{h^4} + \frac{7\pi^4}{11520} \frac{\check{y}^3}{h^4}$

- Electric field by image charge can have all higher order in \check{y} .

*) the interest renewed by S. Machida at 2nd SC collaboration meeting (CERN, March 2018)

🚰 Fermilab

Skew Sextupole Studies

Bending magnets have small (half) apertures:

F-magnets h=2.1 cm, L=2.9 m x 48, ks2^(image)=0.001m⁻³ for y=1mm, Np=7.e10 \Rightarrow can drive 2Qx+Qy

D-magnets h=2.9 cm \Rightarrow can drive 3Qy

The image charges were simulated as skew sextupoles components in F- and D-magnets ~ y ~ $\beta_v^{1/2}cos(n \cdot s/R)$ with n=20

MADX-SC simulations show that vertical offset should be $\sim 0.3\sigma_y$ to produce a noticeable effect in 2000 turns – too large?

Booster measurements show little effect (if any) of SSS located close to F-magnets (K. Seiya)

Summary

• From the standpoint of transverse dynamics with space charge there should be no problem with PIP-II intensity at the present injection energy when using "flat" optics.

• However, we could not reduce losses with these apparently better optics

We tried:

- injection orbit and optics matching
- aperture scans
- decoupling (though Qx+Qy has not been looked at since 2011)
- correction of the 3rd order using upright and skew sextupoles
- reduced chromaticity
- to see head-tail instability
- to detect dipole noise using TBT data (quad noise seems unlikely)
- all to no or very limited success.

Had we missed anything important?

🗲 Fermilab

Outlook

• Can RF phase errors that C.-Y. Tan and Chandra Bhat are looking at now be the reason for increased losses with improved optics? Even if so, the explanation must be found – studies necessary.

- Simulations studies ongoing or planned:
 - longitudinal dynamics with wakes and SC
 - Effects of RF and quadrupole noise
 - 6D dynamics during RF capture with 3DoF SC
 - coherent (envelope) oscillations with MADX-SC

- ...

