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Issues & Goals

o e2_dauso

PIP-I 0.25/0.31
PIP-I+ 400 5.6 0.31/0.38
PIP-II 800 6.5 (0.36/0.44)*

*) would be with 400MeV injection

Losses at nominal (PIP-1) intensity are ~8%, will increase at high
intensity operation (especially with 20Hz reprate)

Simulations goals:
e understand experimental observations
e offer ways of improvement

Tools used:
e Synergia (A. Macridin, E. Stern)
e MADX-SC (Y.A., A. Valishev with a lot of help from F. Schmidt)
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HEP Optics Measurements

All measured data at 3 ms
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Measurements performed by K-modulation definitely confirm
HEP Optics model (MADX)
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Optics Perturbation

The source of the optics perturbation is well-
known: the extraction dogleg created by DC
magnets — the strongest effect @ injection.

A number of solutions considered:

e modify the extraction dogleg using pulsed magnets (expensive)

e half-integer resonance correction using quadrupole harmonic circuits
e “flat” optics (Tan)
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OptICS Fu nCtIOnS W/O SC Fourier Sectra of £-functions
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Tracking Simulations

Beam parameters (A. Macridin):

g \"™=2.34um (g,,*>*=141 mm-mrad)
c,= 0.831532m, Gp/p= 0.00185,

Longitudinal profile is not Gaussian, corrections were made that reduced
space charge tuneshifts to 0.28, 0.38 for Np=7.e10/bunch

Synergia simulations w/o dogleg bump

= still losses due to longitudinal shift in SXLO3 position by 4.75m
= excitation of Qx+2Qy=20

—> can be compensated by tuning other sextupoles
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Synergia Simulations
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« Position of the CPLO3
corrector package is the
main culprit for beam loss

« horizontal chromaticity
has a large influence on
loss
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MADX-SC Simulations for HEP Lattice

no Qx+2Qy correction with Qx+2Qy correction Loss %%
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Losses over 2000 turns as function of bare lattice tunes at nominal Np.
Little improvement at Qx=6.7, Qy=6.8: 4.3% — 3.8%
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MADX-SC Simulations for Flat Lattice 2
Np=5.6e10/bunch Np= 8.1e10/bunch Loss %%
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Losses over 2000 turns as function of bare lattice tunes at nominal

and PIP-Il intensities. Qx+2Qy corrected.

At Qx=6.7, Qy=6.8 losses are negligible: 0% — 0.07%
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Tune scan

(low intensity)

Gy BiCHGA-B: TRENHID .8

Pseudo-flat lattice 1 Pseudo-flat lattice 2 HEP

Pseudo-flat lattice 2 has smaller vertical 1/2 integer resonance and slightly larger
horizontal 1/2 integer resonance.
Both pseudo-flat lattices are much improved over HEP lattice.

Pseudo-Flat Optics 2 looks like a victory, but there is no better

working point than with HEP lattice at high intensity!
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Effect of Image Charges*

Start from Baartman’s expansion
AIP conference proceedings 448, 56 (1998)

Parallel plates aty = +/- h

h ‘[ 7 I_. $ Y
U= —92 lo sin (%ﬁ) — sin (3%_)
1 + cos (J-——”;’f'
Eyimage y t +7r2_§__|_iy_3+ il yyz ity
4N 48 h2 T 16 A2 192 A T 128 R* 11520 h*

Electric field by image charge can have all higher order in ¥ .
The coefficients depends on COD amplitude ¥

*) the interest renewed by S. Machida at 2" SC collaboration meeting (CERN, March 2018)
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Skew Sextupole Studies

Bending magnets have small (half) apertures:

F-magnets h=2.1 cm, L=2.9 m x 48, ks2(image)=0,001m3 for y=1mm, Np=7.e10 =
can drive 2Qx+Qy

D-magnets h=2.9 cm = can drive 3Qy

The image charges were simulated as skew sextupoles components in F- and D-
magnets ~y ~ B, */2cos(n-s/R) with n=20

Losses
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MADX-SC simulations show that vertical offset

should be ~0.35, to produce a noticeable effect Booster measurements show little effect (if any)
in 2000 turns —too large? of SSS located close to F-magnets (K. Seiya)
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Summary

e From the standpoint of transverse dynamics with space charge there should
be no problem with PIP-Il intensity at the present injection energy when using

“flat” optics.

e However, we could not reduce losses with these apparently better optics

We tried:

e injection orbit and optics matching

aperture scans

reduced chromaticity

to see head-tail instability
e to detect dipole noise using TBT data
(quad noise seems unlikely)

- all to no or very limited success.

Had we missed anything important?
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TBT spectra
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decoupling (though Qx+Qy has not been looked at since 2011)

correction of the 3™ order using upright and skew sextupoles
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Outlook

e Can RF phase errors that C.-Y. Tan and Chandra Bhat are looking
at now be the reason for increased losses with improved optics?
Even if so, the explanation must be found — studies necessary.

e Simulations studies ongoing or planned:
- longitudinal dynamics with wakes and SC
- Effects of RF and quadrupole noise
- 6D dynamics during RF capture with 3DoF SC
- coherent (envelope) oscillations with MADX-SC
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