

Plans for ramping up the complex before PIP-II

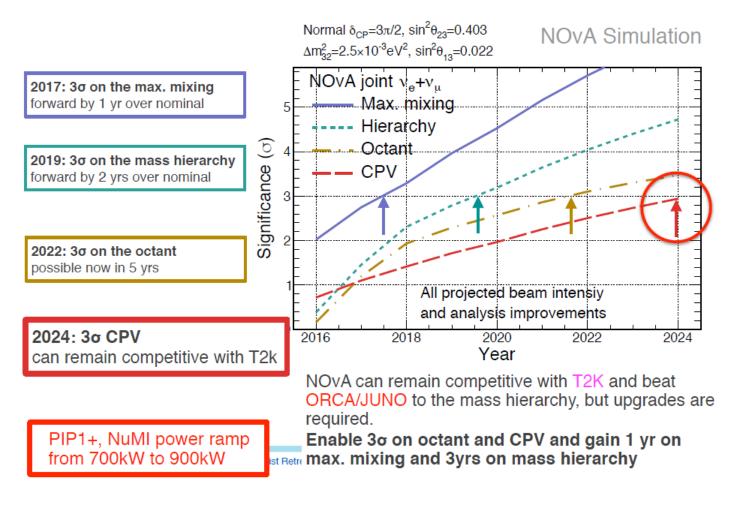
Mary Convery

Fermilab Workshop on Megawatt Rings & IOTA/FAST Collaboration Meeting 8 May 2018

Fermilab accelerator complex

Fermilab long baseline neutrino experiments

- FNAL accelerator complex now provides 700 kW proton beam to the NOvA experiment in the NuMI beamline
- PIP-II will provide 1.2 MW to DUNE in the LBNF beamline


		FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	
LBNF /	SANFORD				DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	
PIP II	FNAL					LBNF	LBNF	LBNF	LBNF	LBN F	LBNF	LBNF	LBNF	LBNF	
NuMI	мі	1INERv.	1INERv.	OPEN	OPEN	OPEN	OPEN	OPEN							
		NOvA	NOvA	NOvA	NOvA	NOvA	NOvA	NOv/							\mathbf{v}
	в	ιBooNI	ιBooNI	ιBooNI	OPEN	OPEN	OPEN	DPEN			OPEN	OPEN	OPEN	OPEN	
BNB		ICARUS	ICARUS	ICARUS	ICARUS	ICARUS	ICARUS	DPEN			OPEN	OPEN	OPEN	OPEN	
		SBND	SBND	SBND	SBND	SBND	SBND	DPEN			OPEN	OPEN	OPEN	OPEN	
		g-2	g-2	g-2								OPEN			
Iviuon	Complex	Mu2e	Mu2e	Mu2e	Mu2e	Mu2e	Mu2e	Mu2	G SHUTDO		Mu2e	Mu2e	Mu2e	OPEN	μ
	MT	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF			FTBF	FTBF	FTBF	FTBF	\square
SY 120	МС	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF			FTBF	FTBF	FTBF	FTBF	р
	NM4	OPEN	E103 9	E1039	E1039	E1039	OPEN	DPEN			OPEN	OPEN	OPEN	OPEN	1-
FY18 FY19 FY20 FY21 FY22 FY23 FY24 FY25 FY26								FY27	FY28	FY29	FY30	Γ			
Construction / commissioning Run Subject to PAC review Shutdown															
🛟 Fermilab															
3 M Convery Plans for ramping up the complex before PIP-II 5/8/2018															

LONG-RANGE PLAN: WORKING DRAFT

Fermilab Program Planning 16-Mar-18

Increasing beam power keeps NOvA competitive

What we could learn from NOvA: Extended Reach

4 M Convery | Plans for ramping up the complex before PIP-II

🛠 Fermilab

How could we increase beam power to NOvA?

- Shorten Main Injector (MI) cycle time to 1.2s
 - 11% increase from design $(1.33s \rightarrow 1.2s)$
 - This capability is close to being available, but...
 - Cuts rate to Muon Campus experiments in half unless also increase repetition rate to 20 Hz
- Increase intensity from Proton Source
 - 28% increase (4.3 E12 \rightarrow 5.5 E12 protons per pulse)
 - Requires improvements to keep beam quality up and reduce losses even further than achieved by PIP
- Increase rep rate from 15 Hz to 20 Hz
 - Requires significant control system changes
 - Requires RF upgrades in Linac, Booster and MI/Recycler
- All of these require a target station that is robust at 1 MW

🛠 Fermilab

Task force led by Vladimir Shiltsev looked at options

Evaluated cost, duration, risk, compatibility with PIP-II

		V Shiltsev 2016 Task Force Report beams-doc-5							<u>·5948</u>	
	Element	TotCost	M&S	FTEyr	Yrs	PPP	1.2s	20Hz	Risk	PIPII
PS1	Booster ramped dogleg	1.5	1	2	1.5	0			perf	V
PS2	B- transverse dampers	0.3	0.1	0.8	1	0			perf	V
PS3	Booster collimators	1.8	0.8	4	1	0			perf	V
PS4	B&Linac HW @ 20 Hz	1.7	1.2	2	1			0	none	V
PS5	New tank 1/RFQ	6.2	5	5	2.5	0			cost	
PS6	400 MeV collimator	1.1	0.6	2	1.5	0			none	
PS7	New D-magnets Booster	12.1	9.6	10	5	0		0	COST	V
MR1	1.2s MI PS/RF modif'n	0.15	0.1	0.2	0.5		0		none	V
MR2	MI gamma-t jump	1.2	0.8	1.5	1.5			0	none	V
MR3	RR RF for 20 Hz	3.2	1.9	5	2			0	none	V
T1	Window, Baffle, Target	0.6	0.23	1.5	1.2	0	0		perf	
Т2	Horns, Power Supplies,	1.2	0.7	1.3	1.6	0	0		perf	
Т3	RAW Protection	2.1	1.25	2.3	1.8	0	0		perf	
T4	Decay pipe window	1.0	0.3	2.7	1.2	0	0		perf	
T5	Targetry Instrumentation	0.6	0.25	1.2	0.9	0	0		perf	
11	20 Hz controls/diagnostcs	5.5	3.5	8	2			0	cost	V

V Chiltony 2016 Tools Fores Depart hearen de

Selected items based on guidance from DOE

- No investment in existing Linac \rightarrow no 20 Hz
- Compatible with PIP-II (except target station)

	<u>V Shi</u>	ltsev 2	2016 T	ask Fo	orce F	Repor	t beam	s-doc-	5948		
		Element	TotCost	M&S	FTEyr	Yrs	PPP	1.2 s	20Hz	Risk	PIPII
	PS1	Booster ramped dogleg	1.5	1	2	1.5	0			perf	V
Booster Intensity AIP -	PS2	B- transverse dampers	0.3	0.1	0.8	1	0			perf	V
	PS3	Booster collimators	1.8	0.8	4	1	0			perf	V
	PS4	B&Linac HW @ 20 Hz	1.7	1.2	2	1			0	none	V
	PS5	New tank 1/RFQ	6.2	5	5	2.5	0			cost	
	PS6	400 MeV collimator	1.1	0.6	2	1.5	0			none	
Booster Magnet AIP-	PS7	New D-magnets Booster	12.1	9.6	10	5	0		0	COST	V
	MR1	1.2s MI PS/RF modif'n	0.15	0.1	0.2	0.5		0		none	V
Main Injector AIP -	MR2	MI gamma-t jump	1.2	0.8	1.5	1.5			0	none	V
	MR3	RR RF for 20 Hz	3.2	1.9	5	2			0	none	V
	T1	Window, Baffle, Target	0.6	0.23	1.5	1.2	0	0		perf	
	T2	Horns, Power Supplies,	1.2	0.7	1.3	1.6	0	0		perf	
NuMI Target Systems AIP -	Т3	RAW Protection	2.1	1.25	2.3	1.8	0	0		perf	
NuMI Target Systems AIP	Τ4	Decay pipe window	1.0	0.3	2.7	1.2	0	0		perf	
	T5	Targetry Instrumentation	0.6	0.25	1.2	0.9	0	0		perf	
	11	20 Hz controls/diagnostcs	5.5	3.5	8	2			0	cost	V

7 M Convery | Plans for ramping up the complex before PIP-II

🚰 Fermilab

Selected strategy to increase beam power to NOvA

- Shorten Main Injector (MI) cycle time to 1.2s
 - 11% increase from design $(1.33s \rightarrow 1.2s)$
 - This capability is close to being available, but...
 - Cuts rate to Muon Campus experiments in half unless also increase repetition rate to 20 Hz
- Increase intensity from Proton Source
 - 28% increase (4.3e12→5.5e12 protons per pulse)
 - Requires improvements to keep beam quality up and reduce losses even further than achieved by PIP
- Increase rep rate from 15 Hz to 20 Hz
 - Requires significant control system changes
 - Requires RF upgrades in Linac, Booster and MI/Recycler
- All of these require a target station that is robust at 1 MW

🛠 Fermilab

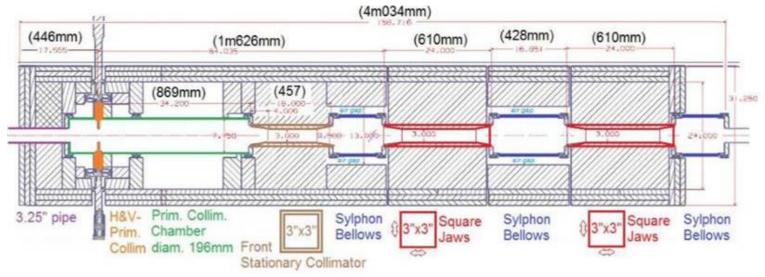
Plan for upgrades for 900kW

• Series of independent Accelerator Improvement Projects

	FY18	FY19	FY20	FY21	FY22	FY23	FY24
NuMI Target Systems							
Booster Intensity							
Booster Magnets							
Main Injector							
Booster RF							

- Includes production and installation of new Booster RF cavities which were prototyped on PIP
 - Larger aperture, 20-Hz capable for PIP-II

NuMI Target Systems AIP

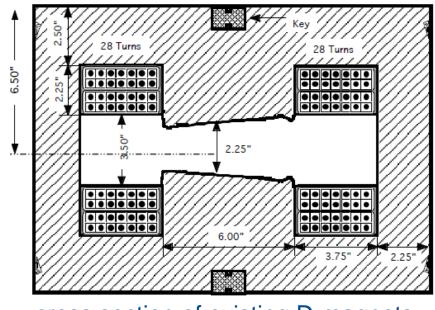

- Temperatures and stresses due to beam heating
 - Pre-target beam window
 - Target core and baffle
 - Horn stripline cooling and horn power supplies
 - Radioactive water systems, target chase air handling, chiller
 - Hadron absorber temperature monitoring
- Increased radioactivation
 - Add shielding to the RAW room and target chase
 - Review NuMI shielding and tritium production assessment for 1MW

🔁 Fermilab

- Retrofit or expand existing tritium mitigation systems
- New radiation-hard Hadron Monitors
- Aging infrastructure (in radioactive environment)
 - Decay pipe window spare and replacement mechanism
 - Target/horn module positioning drives

Booster Intensity AIP

- Booster dampers
 - Lower chromaticity at injection to reduce losses
- Booster collimators
 - Capture losses (reduce tunnel activation and need for shielding)

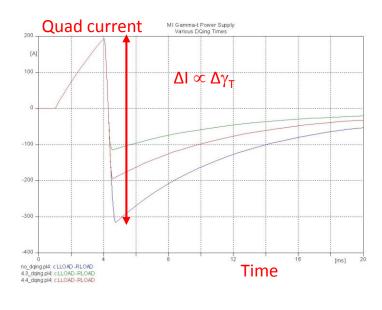


🚰 Fermilab

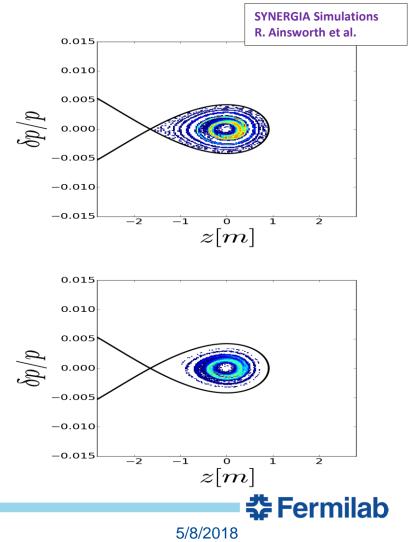
- Booster beam physics studies
 - Lattice, aperture scans, high-intensity studies

Booster Magnets AIP

- New Booster defocusing-type combined function magnets, shorter with larger aperture
- Design could also benefit PIP-II injection



cross section of existing D-magnets



Main Injector AIP

- γ_t jump
 - Design, build, and install new quadrupole magnets to cross transition more quickly to reduce transition losses

Longitudinal Distributions at 40 GeV

13 M Convery | Plans for ramping up the complex before PIP-II

Booster RF AIP

60

55

50

45

- 20 new cavities, 60 kV, also larger aperture
- Was on PIP, but delayed to get benefits of 900 kW sooner
 - Complete prototyping on PIP this year
- Needed for 20 Hz running with PIP-II
- Could support running at 15 Hz as refurbished cavities continue to age

Conclusions

- Have a plan to increase beam power to 900 kW
- Many of the improvements are needed for PIP-II
- Expect funding to start the NuMI Target Systems AIP and the Intensity AIP this month
- Will step up intensities periodically if possible as improvements are made
- Expect target station to be ready for up to 1 MW after 2020 shutdown and Booster ready to send higher intensity beam on same timescale
- Other improvements will continue beyond 2020 which may be needed to reach highest beam power

🔁 Fermilab

