Investigating Nonlinear Integrable Optics with Space Charge in IOTA Using IMPACTZ

Fermilab Workshop on Megawatt Rings \& IOTA/ FAST Collaboration Meeting

Fermilab, Batavia, IL
May 7-10, 2018

Chad Mitchell
Lawrence Berkeley National Laboratory

Outline

- Introduction and single-particle tracking algorithm
- Generation of zero-current matched distribution types
- Self-consistent symplectic integration with space charge
- Beam stability and invariant preservation ($\Delta Q=-0.03$)
- approach to Vlasov near-equilibrium (through turn 700)
- dynamics within a near-equilibrium beam
- long-term stability behavior (through turn 3K)
- Conclusions

A very brief review of single-particle nonlinear integrable optics in IOTA

- Dynamics inside the nonlinear magnetic insert:

$$
H_{\perp}=\frac{1}{2}\left(P_{x}^{2}+P_{y}^{2}\right)-\frac{\tau c^{2}}{\beta(s)} U\left(\frac{X}{c \sqrt{\beta(s)}}, \frac{Y}{c \sqrt{\beta(s)}}\right) \longrightarrow H_{N}=\frac{1}{2}\left(P_{x N}^{2}+P_{y N}^{2}+X_{N}^{2}+Y_{N}^{2}\right)-\tau U\left(X_{N}, Y_{N}\right)
$$

Courant-Snyder transformation, scaling
D\&N give in [1] a realizable potential U such that H_{N} admits a second invariant I_{N} :

$$
\left\{H_{N}, I_{N}\right\}=0
$$

- Dynamics in the arc external to the nonlinear magnetic insert:

Assumed linear with a map R_{N} given by:

$$
R_{N}= \pm I(4 \times 4 \text { identity })
$$

Thus, the phase advance must be пп.

H_{N}, I_{N} are invariant under the one-turn map.
[

Tracking in the nonlinear insert is implemented in IMPACT-Z using a second-order symplectic integrator.

The ideal 2D magnetic field within the nonlinear insert at location s is given by $\vec{B}=\nabla \times \vec{A}=-\nabla \psi$, where the potentials are given in terms of dimensionless quantities:

$$
F=\frac{A_{s}+i \psi}{B \rho}, \quad z=\frac{x+i y}{c \sqrt{\beta(s)}}, \quad \tilde{t}=\frac{\tau c^{2}}{\beta(s)}
$$

using the complex function:

$$
F(z)=\left(\frac{\tilde{t} z}{\sqrt{1-z^{2}}}\right) \arcsin (z)
$$

s-Dependent symplectic tracking is performed using:

$$
H=H_{d r i f t}+H_{N L L}, \quad H_{N L L}=-A_{s} / B \rho
$$

The map for a single numerical step of size h is:

Field lines of the nonlinear insert in the transverse plane (blue)

T - dimensionless insert strength
c - transverse scale parameter [$\mathrm{m}^{1 / 2}$]
$B \rho$ - magnetic rigidity [T-m]
β - betatron amplitude [m]

Tracking in the nonlinear insert is implemented in IMPACT-Z using a second-order symplectic integrator.

The ideal 2D magnetic field within the nonlinear insert at location s is given by $\vec{B}=\nabla \times \vec{A}=-\nabla \psi$, where the potentials are given in terms of dimensionless quantities:

$$
F=\frac{A_{s}+i \psi}{B \rho}, \quad z=\frac{x+i y}{c \sqrt{\beta(s)}}, \quad \tilde{t}=\frac{\tau c^{2}}{\beta(s)}
$$

Field lines of the nonlinear insert in the transverse plane (blue)
$\operatorname{Im}(z)$

- Generation of zero current matched distribution types

General procedure for the generation of an initial beam distribution matched to the nonlinear lattice

normalized phase space variables ($x_{N}, p_{x N}, y_{N}, p_{y N}$)
"nonlinear KV distribution" [1]

$$
f \sim \delta\left(H-\epsilon_{0}\right)
$$

"nonlinear waterbag distribution"

$$
f \sim \Theta\left(\epsilon_{0}-H\right)
$$

- Hamiltonian is s-independent - distribution function is stationary

$$
\binom{x_{N}}{p_{x N}}=\left(\begin{array}{cc}
1 / \sqrt{\beta} & 0 \\
\alpha / \sqrt{\beta} & \sqrt{\beta}
\end{array}\right)\binom{x}{p_{x}}
$$

boundary = equipotential curve

$$
2
$$

of the nonlinear potential
physical phase space variables $\left(x, p_{x}, y, p_{y}\right)$

- Hamiltonian is s-dependent - distribution varies periodically in s - parameter ε_{0} plays the role of emittance

- Python script developed by the RadiaSoft team is used for matched KV beam generation populates uniformly a fixed level set of H.

Generation of matched distribution types with general Hamiltonian dependence

Given a probability density f on the phase space M (of dimension $2 N$) and a smooth Hamiltonian H, the probability density P_{H} describing the values of H is given by the co-area formula as:

$$
P_{H}(h)=\int_{M} f(\zeta) \delta(h-H(\zeta)) d \zeta=\int_{H^{-1}(h)} \frac{f(\zeta)}{|\nabla H(\zeta)|} d \sigma^{2 N-1}(\zeta)
$$

where the surface integral on the right is over the $2 N-1$ dimensional level set of H with value h. (This integral is defined and finite for almost all values of h.)

If \boldsymbol{f} is taken to be uniform on the level sets of \boldsymbol{H}, then $f=G \circ H$ for some function \mathbf{G}, and so:

$$
P_{H}(h)=G(h) \kappa(h), \quad \kappa(h)=\int_{H^{-1}(h)} \frac{1}{|\nabla H(\zeta)|} d \sigma^{2 N-1}(\zeta)
$$

A numerical procedure for generating the beam is to first sample values of H from P_{H} and then to populate uniformly each level set of H, so the resulting density on the phase space is given by:

$$
f=G \circ H, \quad G(h)=P_{H}(h) / \kappa(h)
$$

Generation of matched distribution types with general Hamiltonian dependence

Given a probability density f on the phase space M (of dimension $2 N$) and a smooth Hamiltonian H, the probability density P_{H} describing the values of H is given by the co-area formula as:

$$
P_{H}(h)=\int_{M} f(\zeta) \delta(h-H(\zeta)) d \zeta=\int_{H^{-1}(h)} \frac{f(\zeta)}{|\nabla H(\zeta)|} d \sigma^{2 N-1}(\zeta)
$$

where the surface integral on the right is over the $2 N-1$ dimensional level set of H with value h. (This integral is defined and finite for almost all values of h.)

If \boldsymbol{f} is taken to be uniform on the level sets of \boldsymbol{H}, then $f=G \circ H$ for some function \mathbf{G}, and so:

$$
P_{H}(h)=G(h) \kappa(h), \quad \kappa(h)=\int_{H^{-1}(h)} \frac{1}{|\nabla H(\zeta)|} d \sigma^{2 N-1}(\zeta)
$$

A numerical procedure for generating the beam is to first sample values of H from P_{H} and then to populate uniformly each level set of H, so the resulting density on the phase space is given by:

$$
f=G \circ H, \quad G(h)=P_{H}(h) / \kappa(h) \longrightarrow \text { This Jacobian factor depends on } h .
$$

Numerical evaluation of the Jacobian factor for the Danilov \& Nagaitsev Hamiltonian

The Jacobian κ is evaluated using a numerical Monte Carlo method, as follows:

- sample 10M points uniformly within the 2D domain A_{h} for the value $h=1 / 2$ (dimensionless)
- compute the dimensionless potential value $\Phi(x, y)$ at each point (x, y)
- compute the histogram of Φ values to produce $\kappa_{\Phi} \propto P_{\Phi}$, valid for $h \leq 1 / 2$
- compute the cumulative distribution function of Φ to give κ

Hamiltonian

\[\)| $H\left(x, p_{x}, y, p_{y}\right)=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+\Phi(x, y)$ |
| :---: |
| $A_{h}=\left\{(x, y) \in \mathbb{R}^{2}: \Phi(x, y) \leq h\right\}$ |
| $\kappa_{\Phi}(t)=\int_{\Phi^{-1}(t)} \frac{1}{\|\nabla \Phi(x, y)\|} d \sigma^{1}(x, y)$ |
| Jacobian factor |
| $\kappa(h)=2 \pi m^{2 D}\left(A_{h}\right)=2 \pi \int_{0}^{h} \kappa_{\Phi}(t) d t$ |

\]

Definition of a two-parameter family of matched distribution types - smooth (except at the beam edge)

Nonlinear waterbag distribution: $\quad f \propto \Theta\left(\epsilon_{0}-H\right)$

$$
P_{H}(h) \propto\left\{\begin{array}{ll}
h, & \text { if } h / \epsilon_{0} \leq 1, \\
0, & \text { else }
\end{array} \quad\langle H\rangle=\frac{2 \epsilon_{0}}{3}\right.
$$

Truncated nonlinear Gaussian (thermal) distribution: $\quad f \propto e^{-H / \epsilon_{0}} \Theta\left(\Lambda-H / \epsilon_{0}\right)$

$$
\begin{aligned}
& P_{H}(h) \propto\left\{\begin{array}{l}
h e^{-h / \epsilon_{0}}, \quad \text { if } \quad h / \epsilon_{0} \leq \Lambda \\
0, \quad \text { else }
\end{array}\right. \\
& \langle H\rangle=\epsilon_{0}\left(2+\frac{\Lambda^{2}}{1-e^{\Lambda}+\Lambda}\right) \longrightarrow 2 \epsilon_{0} \quad \text { as } \Lambda \rightarrow \infty .
\end{aligned}
$$

- Reduce to traditional waterbag and Gaussian distributions, respectively, when insert is off.
- The nonlinear Gaussian reduces to the nonlinear waterbag as Λ goes to zero with the quantity <H> held fixed, and provides the ability to control (matched) halo extent.

Definition of a two-parameter family of matched

 distribution types - smooth (except at the beam edge)Nonlinear waterbag distribution: $\quad f \propto \Theta\left(\epsilon_{0}-H\right)$

$$
P_{H}(h) \propto \begin{cases}h, & \text { if } h / \epsilon_{0} \leq 1, \\ 0, & \text { else }\end{cases}
$$

Truncated nonlinear

$$
H / \epsilon_{0} \Theta\left(\Lambda-H / \epsilon_{0}\right)
$$

$$
\begin{gathered}
P_{H}(h) \propto \\
\langle H\rangle=\epsilon_{0}(2
\end{gathered}
$$

- Reduce to traditio
- The nonlinear Gau
temperature parameter cutoff parameter
∞.
ively, when insert is off. es to zero with the quantity <H> held fixed, ana proviaes tne aomity to contron (matcnea) naio extent.

Examples of nonlinear Gaussian (thermal) distributions with cutoffs at $\Lambda=1,3,5$ (shown at entrance to NLI)

Distribution parameters are selected to give: $\langle H\rangle=4 \mathrm{~mm}-\mathrm{mrad}$ with identical Twiss values.

$$
\Lambda=1
$$

$\Lambda=3$

$\Lambda=5$

Office of
Science

- Self-consistent symplectic integration with space charge

Theory of a symplectic spectral space charge solver for coasting 2D beams (1)

Collective N -particle Hamiltonian:

Symplectic map for a single step:

$$
H=H_{1}+H_{2} \quad \mathcal{M}(\tau)=\mathcal{M}_{1}(\tau / 2) \mathcal{M}_{2}(\tau) \mathcal{M}_{1}(\tau / 2)+O\left(\tau^{3}\right)
$$

$H_{1}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N_{p}}, \mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{N_{p}}\right)=\sum_{j=1}^{N_{p}} H_{\mathrm{ext}}^{s . p .}\left(\mathbf{r}_{j}, \mathbf{p}_{j}\right) \rightarrow \underset{\substack{\text { w/o space charge ("external") } \\ \text { wingle-particle Hamiltonian }}}{\text { what }}$ $H_{2}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N_{p}}, \mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{N_{p}}\right)=\frac{K}{2} \sum_{i=1}^{N_{p}} \sum_{j=1}^{N_{p}} G\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right) \rightarrow \rightarrow \begin{gathered}\text { 2D space charge Green function } \\ \text { in a rectangular conducting pipe }\end{gathered}$

continuum limit

$$
\frac{K}{2} \int d \mathbf{r} \rho(\mathbf{r}) \int d \mathbf{r}^{\prime} \rho\left(\mathbf{r}^{\prime}\right) G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\frac{K}{2} \int \rho(\mathbf{r}) \phi(\mathbf{r}) d \mathbf{r}
$$

$$
\text { generalized perveance } \quad K=\frac{I}{I_{A}} \frac{2}{\beta^{3} \gamma^{3}}
$$

Theory of a symplectic spectral space charge solver for coasting 2D beams (2)

Spectral approximation of G using N_{l}, N_{m} Fourier modes in x and y, respectively:

$$
\begin{gathered}
G\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)=4 \pi \frac{4}{a b} \frac{1}{N_{p}} \sum_{l=1}^{N_{l}} \sum_{m=1}^{N_{m}} \frac{1}{\gamma_{l m}^{2}} \sin \left(\alpha_{l} x_{j}\right) \sin \left(\beta_{m} y_{j}\right) \sin \left(\alpha_{l} x_{i}\right) \sin \left(\beta_{m} y_{i}\right) \\
\quad \text { for mode (l,m): } \quad \alpha_{l}=\frac{l \pi}{a}, \quad \beta_{m}=\frac{m \pi}{b}, \quad \gamma_{l m}^{2}=\alpha_{l}^{2}+\beta_{m}^{2}
\end{gathered}
$$

The symplectic map \mathcal{M}_{2} associated with H_{2} is given for particle \boldsymbol{i} as:

$$
\begin{aligned}
p_{x i}(\tau) & =p_{x i}(0)-\tau K \sum_{j=1}^{N_{p}} \frac{\partial G\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)}{\partial x_{i}} \\
p_{y_{i}}(\tau) & =p_{y i}(0)-\tau K \sum_{j=1}^{N_{p}} \frac{\partial G\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)}{\partial y_{i}}
\end{aligned}
$$

Computed directly from particle data in the laboratory frame using (\star).

Note: Momenta are normalized by the design momentum p_{0}.

Computational complexity scales as $O\left(N_{l} \times N_{m} \times N_{p}\right)$. See also [1] and the talk by N. Cook.

Benchmark 1: Expansion in free space of a cold uniform cylinder beam (1).

Beam size evolution

Linear drift (kinematic nonlinearities off) $K E=2.5 \mathrm{MeV} p$ (equal to IOTA benchmark value)
$R_{0}=3.905 \mathrm{~mm}$ (equal to IOTA benchmark value)
$I=4.113 \mathrm{~mA} \quad(10 \times$ IOTA benchmark value $)$
$a=b=5 \mathrm{~cm}$ (chosen to be $\gg R_{0}$)

Emittance evolution

Measures of numerical resolution:

$$
\lambda_{\min } / R_{0}=0.1 \quad h_{S C} / L=0.0591
$$

$$
R_{0} / a=0.0781
$$

Benchmark 1: Expansion in free space of a cold uniform cylinder beam (2): Hamiltonian preservation

Evolution of the N -particle Hamiltonian

Initial value of \boldsymbol{H} :

$$
H / N_{p}=9.694248 \times 10^{-7}
$$

Numerical resolution:

$$
\begin{aligned}
& \lambda_{\min } / R_{0}=0.1 \\
& R_{0} / a=0.0781 \\
& N_{p}=1.024 \mathrm{M}
\end{aligned}
$$

The error in H scales as expected:

$$
\sim O\left(h_{S C} / L\right)^{2}
$$

Benchmark 2: A matched waterbag beam in the linear IOTA lattice.

- IOTA lattice retuned for space charge tune depression of $\Delta Q=-0.03$
- Nonlinear insert turned OFF (linear lattice)

Convergence of phase advance across the arc

Emittance evolution: $\Delta \epsilon_{x, y} / \epsilon_{x, y} \approx 4 \times 10^{-5}$

Office of
Science

Waterbag beam, 1.024 M particles $I=0.4113 \mathrm{~mA},\langle H\rangle=4 \mathrm{~mm}$-mrad

Final beam phase space

Benchmark 2: A matched waterbag beam in the linear IOTA lattice.

- IOTA lattice retuned for space charge tune depression of $\Delta \mathrm{Q}=-0.03$
- Nonlinear insert turned OFF (linear lattice)

Waterbag beam, 1.024 M particles $I=0.4113 \mathrm{~mA},\langle H\rangle=4 \mathrm{~mm}$-mrad

Final beam phase space

ACCELERATUITLITINuLuota
APPLIED PHYSICS DIVISION

- Beam stability and invariant preservation

Tracking in the IOTA Lattice with Space Charge Assumptions and Simulation Parameters

Objective: To isolate and understand the perturbative effects of space charge on the ideal integrable single-particle dynamics at moderate space charge tune depression.

- Elements external to the nonlinear insert are sliced longitudinally and treated as symplectic maps alternating with space charge momentum kicks (split-operator approach): linear order.
- Space charge is included self-consistently throughout the lattice using the symplectic spectral solver with a rectangular boundary of large aperture to emulate free-space boundary conditions.
- We consider a long, unbunched beam with zero energy spread to remain near the ideal integrable working point.
- Quadrupole settings are retuned to provide $n \pi$ phase advance across the arc after including the linearized space charge fields at the desired value of beam current (A. Romanov, [1]).
- Twiss functions with linearized space charge included must be appropriately matched to the nonlinear insert. See also [2].

$$
\begin{array}{ll}
\text { Insert parameters: } & \tau=0.4, \quad \mathrm{c}=0.01 \mathrm{~m}^{1 / 2}, \quad \mu_{0}=0.30345, \quad L=1.8 \mathrm{~m} \\
\text { Beam parameters: } & K E=2.5 \mathrm{MeV}, \quad I=0.4113 \mathrm{~mA}, \quad\langle H\rangle=4.0 \mathrm{~mm}-\mathrm{mrad}, \quad \Delta Q_{x}=\Delta Q_{x}=-0.03
\end{array}
$$

Tracking in the IOTA Lattice with Space Charge Assumptions and Simulation Parameters

Objective: To isolate and understand the perturbative effects of space charge on the ideal integrable single-particle dynamics at moderate space charge tune depression.

- Elements external to the nonlinear insert are sliced longitudinally and treated as symplectic maps alternating with space charge momentum kicks (split-operator approach): linear order.
- Space solver
- We con integra
- Quadru the line
- Twiss fi nonline

Insert pa Beam pa

Tune advance footprint for 0.4113 mA
(waterbag beam, <H> $=4 \mathrm{~mm}-\mathrm{mrad})$

IOTA Ring

Settings designed for a space charge tune depression of -0.03 .
ctic spectral ary conditions.
ideal
including ov, [1]).
hed to the

[1] A. Romanov et al, THPOA23, NAPAC 2016. [2] C. Hall et al, WEA4CO02, NAPAC 2016.

Tracking in the IOTA Lattice with Space Charge First 700 Turns (1)

Evolution of the standard deviation of the two invariants of single-particle motion for 700 turns.

First invariant

Second invariant

- In all cases, <H> = 4 mm-mrad. Growth during the initial period of nonlinear mixing and phase space filamentation (turns 1-100) appears to depend only weakly on the cutoff parameter Λ.
- The time scale for this initial mixing decreases with increasing Λ, as larger-amplitude particles in the tail contribute to stronger nonlinear damping.

Tracking in the IOTA Lattice with Space Charge First 700 Turns (2)

Evolution of the horizontal density profile showing stability of low-density tail

All three spatial profiles appear quite stable.
Perhaps a minor change in the curvature of the profile near the outer beam edge in the waterbag case?
1.024 M particles, 64×64 spectral modes 480 steps through the nonlinear insert

Tracking in the IOTA Lattice with Space Charge First 700 Turns (3)

Evolution of the first invariant (Hamiltonian) profile showing the effects of space charge

Redistribution of the single-particle invariants occurs primarily near the outer beam edge through profile smoothing near the discontinuity at $H=H_{\text {max }}$.

Similar behavior is apparent in the evolution of the profile of the second invariant.

Dynamics within a near-equilibrium nonlinear waterbag beam Invariant profiles are well-preserved across the arc

Dynamics within a near-equilibrium nonlinear waterbag beam Advance of invariant values across the arc

Individual particle changes in H and I are as large as 20\%

Office of
Science

Smooth focusing waterbag model of equilibrium in the linear IOTA lattice (action advance across the arc)

[^0]
Tracking in the IOTA Lattice with Space Charge First 3,000 Turns

Long-term tracking over 3,000 turns showing sensitivity of diffusion rates to distribution details.

First invariant

Second invariant

In both cases, $\langle H\rangle=4 \mathrm{~mm}$-mrad. The beams are well-matched in horizontal and vertical rms beam sizes, but the current density differs by $>10 \%$ at the beam center \rightarrow differences in tune advance for particles in the core. Greater nonlinearity in the space charge fields for the Gaussian beam does not appear to result in more rapid diffusion in this case.

Convergence of the Standard Deviation of Single-Particle Invariants with Numerical Resolution of Space Charge

Rate of relative growth (\%/turn)

Dynamics of initial mixing and phase space filamentation are well-resolved using $\sim 100 \mathrm{~K}$ particles and 16×16 spectral modes.

Rates of diffusion (above) are computed using linear interpolation of data taken over 200 turns.

Due to particle noise, $\sim 1 \mathrm{M}$ particles are required to begin to approach convergence of the diffusion rates. This could potentially be improved using higher-order macroparticle shapes.

Relative growth at turn 300 (\%)

Initial mixing behavior saturates at low resolution (~100K particles, 16x16 modes).

Traditional rms emittance growth and beam size evolution for the nonlinear waterbag beam

- Emittance is well-preserved after initial
redistribution due to space charge.
- Growth in the outer beam edge at the 10% level over 3K turns (stable beyond turn 350).

$$
\begin{aligned}
& \text { Matched nonlinear waterbag beam } \\
& I=0.4113 \mathrm{~mA},<H>=4.0 \mathrm{~mm}-\mathrm{mrad} \\
& T=0.4, \mathrm{c}=0.01, \mu_{0}=0.30345, \mathrm{~L}=1.8 \mathrm{~m}
\end{aligned}
$$

Change in rms beam size: 3\% (0.1 mm)
Change in maximum x-deviation: 11\% (1.0 mm)

Conclusions

- A family of initial beam distribution types controlled by two parameters <H> (generalized emittance) and Λ (cutoff) allows us to investigate sensitivity to distribution details while remaining matched to the (ideal) nonlinear lattice.
- Tracking is performed using a symplectic integrator within the nonlinear magnetic insert, coupled with a symplectic spectral solver for self-consistent space charge tracking to avoid non-Hamiltonian sources of numerical noise. Particle noise has a significant impact on the observed stochatic diffusion. Here 1.024M particles are used.
- We focus on isolating the perturbative effects of space charge for moderate tune depression ($\Delta Q=-0.03$).
- Initial nonlinear mixing leads to a near-matched equilibrium by turn 350. The largest visible effect is smoothing of the hard outer beam edge. The distribution of invariants is well-preserved both 1) across the nonlinear insert and 2) across the arc. However, the single-particle invariants along each orbit fluctuate significantly ($\sim 20 \%$). Nevertheless, the invariants provide a sensitive measure of beam quality.
- There remains evidence of slow stochastic diffusion, while both rms beam sizes remain well-controlled. An 11% increase in maximum horizontal particle amplitude is visible, and a larger number of spectral modes may be needed to verify that the space charge fields at the beam edge are well-resolved.
- The dynamics appear robust in the presence of nonlinear space charge fields caused by the presence of a matched, low-density tail, which also results in more rapid nonlinear damping.

Office of
Science

- Backup material

Overview of advanced computing/modeling using IMPACT-Z

- The IMPACT-Z code \& physics model

■ s-based symplectic particle tracking using maps

- Poisson solvers for 6 distinct boundary conditions
- standard beamline elements, RF and RW wakefields
- field, misalignment, and rotation errors
- multi-turn tracking with simulation restart
- efficient parallelization, access to NERSC
- The IMPACT code suite is used by >40 institutes worldwide
- successfully applied to both electron \& proton machines:

Collaboration with teams at RadiaSoft and FNAL, who are modeling IOTA using SYNERGIA.

Science

The IOTA ring : a test bed for strategies designed to mitigate space charge-induced beam halo.

- Possible strategies: electron lenses/columns, nonlinear integrable lattices
- Integrable Optics Test Accelerator (IOTA)
- Novel accelerator physics: strongly nonlinear design
- Experimental test bed for SC mitigation schemes
- Run first with electrons, then low-energy protons

- Nonlinearity \Rightarrow tune spread "washes out" coherent space charge instabilities
- Integrability \Rightarrow ensures orbits are regular and remain bounded (no chaos)
${ }^{1}$ S. Webb et al, p. 2961, IPAC 2012

Summary of spatial projections for revised matched distributions in the D\&N potential

Nonlinear KV $\quad G(h) \propto \delta\left(h-\epsilon_{0}\right)$

$$
P_{X Y}(x, y) \propto \begin{cases}1, & \Phi(x, y) / \epsilon_{0} \leq 1 \\ 0, & \text { else }\end{cases}
$$

$$
\begin{gathered}
\text { Potential (dimensionless form) } \\
\Phi(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)+\tau \mathcal{R} e[F(x+i y)] \\
F(z)=\left(\frac{z}{\sqrt{1-z^{2}}}\right) \arcsin (z)
\end{gathered}
$$

Nonlinear Waterbag $G(h) \propto \Theta\left(\epsilon_{0}-h\right)$
$P_{X Y}(x, y) \propto \begin{cases}1-\Phi(x, y) / \epsilon_{0}, & \Phi(x, y) / \epsilon_{0} \leq 1, \\ 0, & \text { else }\end{cases}$
Nonlinear Gaussian $\quad G(h) \propto e^{-h / \epsilon_{0}} \Theta\left(\Lambda-h / \epsilon_{0}\right)$

(dimensionless)
$P_{X Y}(x, y) \propto \begin{cases}e^{-\Phi(x, y) / \epsilon_{0}}-e^{-\Lambda}, & \Phi(x, y) / \epsilon_{0} \leq \Lambda, \\ 0, & \text { else }\end{cases}$

Nonlinear Waterbag Beam in the IOTA Lattice Spatial profiles are well-preserved across the arc

Smooth focusing waterbag model of equilibrium in the linear IOTA lattice

Hamiltonian:

$$
\begin{aligned}
& H\left(x, p_{x}, y, p_{y}\right)=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{2} k_{0}^{2}\left(x^{2}+y^{2}\right)+\frac{q \phi_{s}(x, y)}{\beta^{2} \gamma^{3} m c^{2}} \leftarrow \begin{array}{c}
\substack{\text { self-consistent } \\
\text { spacecharge } \\
\text { potential }}
\end{array} \\
& p_{x}=\gamma m \dot{x} / p^{0}, \quad p_{y}=\gamma m \dot{y} / p^{0}
\end{aligned}
$$

Due to symmetry under rotation, \boldsymbol{H} is integrable with a second invariant given by $J_{z}=x p_{y}-y p_{x}$.

Distribution function:

Spatial density:

$$
\begin{aligned}
& f=G \circ H \\
& G(h) \propto \Theta\left(H_{\max }-h\right) \quad P_{X Y}(x, y) \propto\left\{\begin{array}{l}
1-W(|\vec{r}|) / H_{\max }, \quad W(|\vec{r}|) / H_{\max } \leq 1, \\
0, \quad \text { else }
\end{array}\right.
\end{aligned}
$$

Self-consistent potential:

$$
W(r)=\frac{1}{2} k_{0}^{2} r^{2}+\frac{q \phi_{s}(r)}{\beta^{2} \gamma^{3} m c^{2}}=\frac{1}{2} k_{0}^{2} a^{2}\left[1-\frac{4}{k_{1}^{2} a^{2}}\left(1-\frac{I_{0}\left(k_{1} r\right)}{I_{0}\left(k_{1} a\right)}\right)\right]
$$

Generalized space charge perveance: $\quad K_{\text {perv }}=k_{0}^{2} a^{2} \frac{I_{2}\left(k_{1} a\right)}{I_{0}\left(k_{1} a\right)}$

Smooth focusing waterbag model of equilibrium in the linear IOTA lattice

Hamiltonian expressed using zero-current action-angle variables:

$$
x_{N}+i p_{x N}=\sqrt{2 I_{x}} e^{-i \phi_{x}}, \quad x_{N}=x \sqrt{k_{0}}, \quad p_{x N}=p_{x} / \sqrt{k_{0}} \begin{gathered}
\text { nomained } \\
\text { coordinates }
\end{gathered}
$$

$$
H\left(\phi_{x}, I_{x}, \phi_{y}, I_{y}\right)=k_{0}\left(I_{x}+I_{y}\right)+V(R(\vec{\phi}, \vec{I}))
$$

$$
V(r)=W(r)-\frac{1}{2} k_{0}^{2} r^{2} \quad R(\vec{\phi}, \vec{I})=\left[\frac{2 I_{x}}{k_{0}} \cos ^{2} \phi_{x}+\frac{2 I_{y}}{k_{0}} \cos ^{2} \phi_{y}\right]^{1 / 2}
$$

Input parameters:

1) rms emittance: $\varepsilon_{x}=2 \mathrm{~mm}-\mathrm{mrad}$
2) undepressed tune advance A to $B: Q_{x}=5.03$
3) space charge tune depression: $\Delta Q_{x}=-0.03$
4) length of $\operatorname{arc} A$ to B : $L_{a r c}=38.1682 \mathrm{~m}$

Model parameters:
$\mathrm{k}_{0}=0.828 \mathrm{~m}^{-1}, \mathrm{k}_{1}=66.355 \mathrm{~m}^{-1}$
$\mathrm{a}=3.817 \mathrm{~mm}, \quad \mathrm{H}_{\max }=4.995 \mathrm{~mm}-\mathrm{mrad}$

Matched to an rms equivalent KV beam. ${ }^{1}$

Examine the evolution of the zero-current invariants (actions).

Checks: $\sigma_{x}=3.118 \mathrm{~mm}, I=4.85 \mathrm{~mA}$

[^0]: ${ }^{1}$ Assuming a stationary waterbag beam with emittance, phase advance, and tune depression used in the IOTA lattice.

