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Outline 

!  Introduction and single-particle tracking algorithm 
 
!  Generation of zero-current matched distribution types 
 
!  Self-consistent symplectic integration with space charge 
 
!  Beam stability and invariant preservation (ΔQ=-0.03) 

 - approach to Vlasov near-equilibrium (through turn 700) 
 - dynamics within a near-equilibrium beam 
 - long-term stability behavior (through turn 3K) 

 
!  Conclusions 
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•  Dynamics inside the nonlinear magnetic insert: 

A very brief review of single-particle nonlinear integrable 
optics in IOTA 

[1] V. Danilov and S. Nagaitsev, PRAB 13, 084002 (2010)  

•  Dynamics in the arc external to 
the nonlinear magnetic insert: 

•  βx = βy , D = 0 across the nonlinear drift space 
•  nπ phase advance from nonlinear drift space 
       exit to nonlinear drift space entrance  
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D&N give in [1] a realizable potential U  
such that HN admits a second invariant IN :  

{HN , IN} = 0

Assumed linear with a map RN given by: 
 
 
Thus, the phase advance must be nπ. 

RN = ±I (4x4 identity) 

HN, IN are invariant under the one-turn map. 
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first invariant 
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Tracking in the nonlinear insert is implemented in  
IMPACT-Z using a second-order symplectic integrator. 

F (z) =
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C. E. Mitchell, THPAK035, IPAC 2018 and LBNL Report LBNL-1007217 (2017) 
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The ideal 2D magnetic field within the nonlinear insert at location s is given by 
                              , where the potentials are given in terms of dimensionless quantities: ~B = r⇥ ~A = �r 

F =
As + i 
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, z =
x+ iy
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using the complex function: 

s-Dependent symplectic tracking is performed using: 

H = Hdrift +HNLL, HNLL = �As/B⇢

. 
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The map for a single numerical step of size h is: 

Field lines of the nonlinear insert in the 
 transverse plane (blue) 

τ – dimensionless insert strength 
c – transverse scale parameter [m1/2] 
Bρ – magnetic rigidity [T-m] 
β – betatron amplitude [m] 
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Convergence with stepsize in tracking through the nonlinear insert 



 
 

6 

•  Generation of zero current matched distribution types 



 
 

General procedure for the generation of an initial beam 
distribution matched to the nonlinear lattice 

7 

 
•  Python script developed by the RadiaSoft team is used for matched KV beam generation - 

populates uniformly a fixed level set of H. 

[1] S. Webb et al, p. 3099, IPAC 2013.  

physical phase space 
variables (x, px, y, py) 

Courant-Snyder 
transformation 

normalized phase space 
variables (xN , pxN , yN , pyN) 

- Hamiltonian is s-dependent 
- distribution varies periodically in s 
- parameter ε0 plays the role of emittance  

f ⇠ �(H � ✏0)
“nonlinear KV distribution” [1] 

- Hamiltonian is s-independent 
- distribution function is stationary 

“nonlinear waterbag distribution” 

f ⇠ ⇥(✏0 �H)

Nonlinear KV 
ε0 = 8 mm-mrad 

Nonlinear waterbag 
ε0 = 8 mm-mrad 

boundary = equipotential curve 
of the nonlinear potential 
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Generation of matched distribution types with general 
Hamiltonian dependence 

Given a probability density f on the phase space M (of dimension 2N) and a smooth Hamiltonian 
H, the probability density PH describing the values of H is given by the co-area formula as: 

f = G �H

f = G �H, G(h) = PH(h)/(h)

 
 
If f is taken to be uniform on the level sets of H, then                           for some function G, and so:  

A numerical procedure for generating the beam is to first sample values of H from PH and then to 
populate uniformly each level set of H, so the resulting density on the phase space is given by: 

where the surface integral on the right is over the 2N-1 dimensional level set of H with value h. 
(This integral is defined and finite for almost all values of h.)  

PH(h) =

Z

M

f(⇣)�(h�H(⇣))d⇣ =

Z

H�1(h)

f(⇣)

|rH(⇣)|d�
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PH(h) = G(h)(h), (h) =

Z

H�1(h)

1

|rH(⇣)|d�
2N�1(⇣)
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Generation of matched distribution types with general 
Hamiltonian dependence 
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populate uniformly each level set of H, so the resulting density on the phase space is given by: 

where the surface integral on the right is over the 2N-1 dimensional level set of H with value h. 
(This integral is defined and finite for almost all values of h.)  

This Jacobian factor depends on h. 
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Numerical evaluation of the Jacobian factor for the  
Danilov & Nagaitsev Hamiltonian 
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The Jacobian κ is evaluated using a numerical Monte Carlo method, as follows: 
 
•  sample 10M points uniformly within the 2D domain Ah for the value h = ½ (dimensionless) 
•  compute the dimensionless potential value Φ(x,y) at each point (x,y) 
•  compute the histogram of Φ values to produce κΦ     PΦ, valid for h ≤ 1/2 
•  compute the cumulative distribution function of Φ to give κ 

/

 
τ=0.00 
τ=0.40 
τ=0.45 
τ=0.49 

 

Jacobian factor 

Dependence on τ 
is weak but nonzero. 
 
Almost exactly linear 
in h for all τ. 
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Definition of a two-parameter family of matched 
distribution types  - smooth (except at the beam edge) 
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Nonlinear waterbag distribution: 

•  Reduce to traditional waterbag and Gaussian distributions, respectively, when insert is off. 
•  The nonlinear Gaussian reduces to the nonlinear waterbag as Λ goes to zero with the quantity 

<H> held fixed, and provides the ability to control (matched) halo extent. 

Truncated nonlinear Gaussian (thermal) distribution: 

temperature parameter 
 

cutoff parameter ⇤
✏0

PH(h) /
(
h, if h/✏0  1,

0, else
hHi = 2✏0

3

PH(h) /
(
he�h/✏0 , if h/✏0  ⇤

0, else

f / ⇥(✏0 �H)

f / e�H/✏0⇥(⇤�H/✏0)

hHi = ✏0
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Definition of a two-parameter family of matched 
distribution types  - smooth (except at the beam edge) 
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Nonlinear waterbag distribution: 
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<H> held fixed, and provides the ability to control (matched) halo extent. 
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f / e�H/✏0 , H/✏0  ⇤
Distribution Horizontal Profiles 

 
Λ=0 
Λ=1 
Λ=3 
Λ=5 

 PX

<H> = 4 mm-mrad 
α = 1.4082 
β = 1.9065 m 

τ = 0.4 
c = 0.01 m1/2 



 
 

Examples of nonlinear Gaussian (thermal) distributions  
with cutoffs at Λ = 1, 3, 5 (shown at entrance to NLI) 

Distribution parameters are selected to give:                                           with identical Twiss values. hHi = 4 mm-mrad

⇤ = 1 ⇤ = 3 ⇤ = 5

waterbag 
distribution 
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•  Self-consistent symplectic integration with space charge 



 
 

Theory of a symplectic spectral space charge solver for 
coasting 2D beams (1)  

H = H1 +H2
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ext
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M(⌧) = M1(⌧/2)M2(⌧)M1(⌧/2) +O(⌧3)

Collective N-particle Hamiltonian: Symplectic map for a single step: 

single-particle Hamiltonian 
w/o space charge (“external”) 

2D space charge Green function 
in a rectangular conducting pipe 

x 

y 

(0,0) (a , 0) 

(0, b.) 
� = 0

 J. Qiang, Phys. Rev. ST Accel. Beams 20, 014203 (2017). 
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generalized perveance 

continuum limit 2D Poisson equation 



 
 

Theory of a symplectic spectral space charge solver for 
coasting 2D beams (2)  

Spectral approximation of G using Nl , Nm Fourier modes in x and y, respectively: 

The symplectic map          associated with        is given for particle i as: M2 H2

for mode (l,m): 

p
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i

Computed directly from particle data 
in the laboratory frame using (★). 

Note:  Momenta are normalized 
by the design momentum p0. 

(★) 

Computational complexity scales as                                         .    See also [1] and the talk by N. Cook.   
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[1]  S. Webb, Plasma Phys. Control. Fusion 58, 034007 (2016). 



 
 

Benchmark 1:  Expansion in free space of a cold uniform 
cylinder beam (1). 

Measures of numerical resolution: 

�min/R0 = 0.1
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× 2.04 

× 2.03 

Beam size evolution 

      
 
  
 

�min/R0 = 0.4

�min/R0 = 0.2

�min/R0 = 0.1

Emittance evolution 

doubling 
distance 

hSC/L = 0.0591

Linear drift (kinematic nonlinearities off) 
KE = 2.5 MeV p  (equal to IOTA benchmark value) 
R0 = 3.905 mm (equal to IOTA benchmark value) 
I = 4.113 mA     (10 × IOTA benchmark value) 
a = b = 5 cm  (chosen to be >> R0) R0/a = 0.0781



 
 

Benchmark 1:  Expansion in free space of a cold uniform 
cylinder beam (2):  Hamiltonian preservation 
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The error in H scales as expected: 

Evolution of the N-particle Hamiltonian 
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hSC/L = 0.0591
hSC/L = 0.0296
hSC/L = 0.0148

Initial value of H : 

H/Np = 9.694248⇥ 10�7

�min/R0 = 0.1

Numerical resolution: 

Np = 1.024 M

R0/a = 0.0781



 
 

Benchmark 2:  A matched waterbag beam in the linear  
IOTA lattice. 

•  IOTA lattice retuned for space charge  
     tune depression of ΔQ = -0.03 
•  Nonlinear insert turned OFF (linear lattice) Final beam phase space 

Waterbag beam, 1.024 M particles 
I = 0.4113 mA, <H> = 4 mm-mrad 

2D symplectic 
spectral solver 

2D PIC Poisson  
solver 
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Emittance evolution: 

Convergence of phase advance across the arc 
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Relative emittance growth over 1K turns 

   2D PIC solver 
   2D Symplectic solver 
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•  Beam stability and invariant preservation 
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Tracking in the IOTA Lattice with Space Charge - 
Assumptions and Simulation Parameters 

Objective:  To isolate and understand the perturbative effects of space charge on the ideal  
integrable single-particle dynamics at moderate space charge tune depression. 
 
•  Elements external to the nonlinear insert are sliced longitudinally and treated as symplectic 
      maps alternating with space charge momentum kicks (split-operator approach):  linear order. 

•  Space charge is included self-consistently throughout the lattice using the symplectic spectral 
      solver with a rectangular boundary of large aperture to emulate free-space boundary conditions. 
 
•  We consider a long, unbunched beam with zero energy spread to remain near the ideal  
      integrable working point. 
 
•  Quadrupole settings are retuned to provide nπ phase advance across the arc after including  
      the linearized space charge fields at the desired value of beam current (A. Romanov, [1]). 

•  Twiss functions with linearized space charge included must be appropriately matched to the  
      nonlinear insert.     See also [2]. 

[1] A. Romanov et al, THPOA23, NAPAC 2016.      [2] C. Hall et al, WEA4CO02, NAPAC 2016.   

 Insert parameters:     τ = 0.4,   c = 0.01 m1/2,   µ0 = 0.30345,   L = 1.8 m 
 Beam parameters:     KE = 2.5 MeV,   I = 0.4113 mA,   <H> = 4.0 mm-mrad,   ΔQx = ΔQx = -0.03 
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Tracking in the IOTA Lattice with Space Charge - 
Assumptions and Simulation Parameters 

Objective:  To isolate and understand the perturbative effects of space charge on the ideal  
integrable single-particle dynamics at moderate space charge tune depression. 
 
•  Elements external to the nonlinear insert are sliced longitudinally and treated as symplectic 
      maps alternating with space charge momentum kicks (split-operator approach):  linear order. 

•  Space charge is included self-consistently throughout the lattice using the symplectic spectral 
      solver with a rectangular boundary of large aperture to emulate free-space boundary conditions. 
 
•  We consider a long, unbunched beam with zero energy spread to remain near the ideal  
      integrable working point. 
 
•  Quadrupole settings are retuned to provide nπ phase advance across the arc after including  
      the linearized space charge fields at the desired value of beam current (A. Romanov, [1]). 

•  Twiss functions with linearized space charge included must be appropriately matched to the  
      nonlinear insert.     See also [2]. 

[1] A. Romanov et al, THPOA23, NAPAC 2016.      [2] C. Hall et al, WEA4CO02, NAPAC 2016.   

 Insert parameters:     τ = 0.4,   c = 0.01 m1/2,   µ0 = 0.30345,   L = 1.8 m 
 Beam parameters:     KE = 2.5 MeV,   I = 0.4113 mA,   <H> = 4.0 mm-mrad,   ΔQx = ΔQx = -0.03 

Tune advance footprint for 0.4113 mA 
        (waterbag beam, <H> = 4 mm-mrad) 

SC induced 
tune spread 

 
 

Implementation of a beam-based phase advance “unwrap” 
algorithm to understand space charge induced diffusion 

47 

Need an nπ phase advance around the ring between the exit and the entrance of the 
nonlinear insert with space charge to provide integrability. 

R =A
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NA�1
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Mean phase advance in X and Y: 
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y

= �0.0102⇥ 2⇡

Phase advance across the arc (IMPACT-Z) 

+

 
x

/2⇡

 
y
/2
⇡

SC induced 
tune spread 

Nonlinear 
insert 

nπ phase advance 

“arc” 

IOTA Ring 

Settings designed for  
a space charge tune  
depression of -0.03. 
 



 
 

Tracking in the IOTA Lattice with Space Charge –  
First 700 Turns (1) 

Evolution of the standard deviation of the two invariants of single-particle motion for 700 turns. 

First invariant Second invariant 

•  In all cases, <H> = 4 mm-mrad. Growth during the initial period of nonlinear mixing and phase 
space filamentation (turns 1-100) appears to depend only weakly on the cutoff parameter Λ.  

•  The time scale for this initial mixing decreases with increasing Λ, as larger-amplitude particles 
in the tail contribute to stronger nonlinear damping. 
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nonlinear 
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nonlinear 
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Tracking in the IOTA Lattice with Space Charge –  
First 700 Turns (2) 

Evolution of the horizontal density profile showing stability of low-density tail 

Gaussian (Λ=3) Waterbag (Λ=0) 

Gaussian (Λ=5) 

PX

PX

PX

initial beam 

after 700 turns 

initial beam 

after 700 turns 

initial beam 

after 700 turns 

All three spatial profiles appear quite stable.   
 
Perhaps a minor change in the curvature of the profile 
near the outer beam edge in the waterbag case? 
 
1.024 M particles, 64 x 64 spectral modes 
480 steps through the nonlinear insert 



 
 

Tracking in the IOTA Lattice with Space Charge –  
First 700 Turns (3) 

Evolution of the first invariant (Hamiltonian) profile showing the effects of space charge 

Redistribution of the single-particle invariants occurs 
primarily near the outer beam edge through profile 
smoothing near the discontinuity at H=Hmax. 
 
Similar behavior is apparent in the evolution of the 
profile of the second invariant. 

Gaussian (Λ=3) Waterbag (Λ=0) 

Gaussian (Λ=5) 

initial beam after 700 turns 

initial beam 

after 700 turns 

initial beam 

after 700 turns 

PH PH

PH

H/hHi H/hHi

H/hHi



 
 

Dynamics within a near-equilibrium nonlinear waterbag beam –  
Invariant profiles are well-preserved across the arc 
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PH PI
��I/hIi = 0.031%��H/hHi = 0.030%

H, I are here expressed  
in dimensionless units 

PH PI
��H/hHi = 0.046% ��I/hIi = 0.008%

Arc entry 
Arc exit 

Arc entry 
Arc exit 

Turn 350 

Turn 700 

First invariant profile Second invariant profile 

Beam distribution is 
nearly stationary 



 
 

Dynamics within a near-equilibrium nonlinear waterbag beam –  
Advance of invariant values across the arc 
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Individual particle changes in H and I are as large as 20% 

�H/hHi

�
I/

hI
i

high 
density 

�H/hHi

�
I/

hI
i

high 
density 

�H/hHi

P�H ��H/hHi = 6.7%

�I/hIi

P�I

Turn 350 
Turn 700 

��I/hIi = 4.8%

Turn 350 Turn 700 

Footprint is 
stable over 
350 turns 



 
 

Smooth focusing waterbag model of equilibrium in the 
linear IOTA lattice (action advance across the arc) 

-0.04 -0.02 0.00 0.02 0.04
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P Ix

�I
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/hI
x

i

P�I
x

Turn 350 
Turn 700 

Distribution in the 
change of action  
across the arc 

1Assuming a stationary waterbag beam with emittance, phase advance, and tune depression used in the IOTA lattice. 
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x

0.5 1.0 1.5 2.0 2.5 3.0
Ix / Ix0.0

0.1

0.2

0.3

0.4

0.5

0.6

PIx

stationary 

Arc entry 
Arc exit 

I
x

/hI
x

i

Distribution of 
action values 

Turn 700 

Smooth focusing model1 Linear IOTA lattice 

Well-described 
by a smooth 
focusing model. 



 
 

Tracking in the IOTA Lattice with Space Charge –  
First 3,000 Turns 

Long-term tracking over 3,000 turns showing sensitivity of diffusion rates to distribution details. 

First invariant Second invariant 
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�
�
H
/
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i
[%

] nonlinear 
waterbag (Λ=0) 

nonlinear 
Gaussian (Λ=3) 

nonlinear 
waterbag (Λ=0) 

nonlinear 
Gaussian (Λ=3) 

�
�
p
I
/h
p
Ii

[%
]

In both cases, <H> = 4 mm-mrad.   The beams are well-matched in horizontal and vertical rms 
beam sizes, but the current density differs by >10% at the beam center      differences in tune 
advance for particles in the core.  Greater nonlinearity in the space charge fields for the Gaussian 
beam does not appear to result in more rapid diffusion in this case. 



 
 

Convergence of the Standard Deviation of Single-Particle 
Invariants with Numerical Resolution of Space Charge 
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Convergence Behavior of IOTA Invariants (300 turns, ΔQ=0.03):  
2D Symplectic Spectral Space Charge Solver  
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0 20 40 60 80 

Varying Np with 
Nmodes = 64x64  
Nsteps fixed 

Varying Nmodes 
Np = 1.024M  
Nsteps fixed 

�H

Obtained using linear regression 
on data from turns 100-300. 

Np Np 

Nmode Nmode 

�p
I

Particle noise is increasing 
for Nmode > 20. 
 
Higher resolution will 
require larger Np. 

Initial mixing behavior saturates at low  
resolution (~100K particles, 16x16 modes).  

Diffusion rate illustrates 
decay of particle noise. 
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1.4 
1.2 

�H

�p
I

�H

�p
I

Varying Nmode 
Np = 1.024 M 
Nsteps fixed 

Dynamics of initial mixing and phase space  
filamentation are well-resolved using ~100K  
particles and 16x16 spectral modes. 
 
Rates of diffusion (above) are computed using  
linear interpolation of data taken over 200 turns. 
 
Due to particle noise, ~1M particles are  
required to begin to approach convergence of  
the diffusion rates.  This could potentially be  
improved using higher-order macroparticle shapes. 



 
 

Traditional rms emittance growth and beam size evolution 
for the nonlinear waterbag beam 
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•  Emittance is well-preserved after initial 
      redistribution due to space charge. 
•  Growth in the outer beam edge at the 10% 
      level over 3K turns (stable beyond turn 350). 

   Matched nonlinear waterbag beam 
   I = 0.4113 mA, <H> = 4.0 mm-mrad 
   τ = 0.4, c = 0.01, µ0 = 0.30345, L = 1.8 m 

Change in rms beam size:  3% (0.1 mm) 
Change in maximum x-deviation:  11% (1.0 mm) 

X and Y are strongly coupled by the nonlinear 
insert.  We show the change in            .   

p
✏
x

✏
y

Beam size evolution on turn 3K 
no losses 

 
 
 

σx (turn 3K) 
xmax (turn 1) 
xmax (turn 3K) 
 
 

Traditional emittance growth 

64x64 modes, 1.024 M particles 
rectangular boundary a=b=5 cm 



 
 

Conclusions 

•  A family of initial beam distribution types controlled by two parameters <H> (generalized emittance) and Λ 
(cutoff) allows us to investigate sensitivity to distribution details while remaining matched to the (ideal) 
nonlinear lattice. 

 
•  Tracking is performed using a symplectic integrator within the nonlinear magnetic insert, coupled with a 

symplectic spectral solver for self-consistent space charge tracking to avoid non-Hamiltonian sources of 
numerical noise.  Particle noise has a significant impact on the observed stochatic diffusion.  Here 1.024M 
particles are used. 

•  We focus on isolating the perturbative effects of space charge for moderate tune depression (ΔQ=-0.03). 
 
•  Initial nonlinear mixing leads to a near-matched equilibrium by turn 350.  The largest visible effect is 

smoothing of the hard outer beam edge.  The distribution of invariants is well-preserved both 1) across the 
nonlinear insert and 2) across the arc.  However, the single-particle invariants along each orbit fluctuate 
significantly (~20%).  Nevertheless, the invariants provide a sensitive measure of beam quality. 

•  There remains evidence of slow stochastic diffusion, while both rms beam sizes remain well-controlled.  An 
11% increase in maximum horizontal particle amplitude is visible, and a larger number of spectral modes 
may be needed to verify that the space charge fields at the beam edge are well-resolved. 

•  The dynamics appear robust in the presence of nonlinear space charge fields caused by the presence of a 
matched, low-density tail, which also results in more rapid nonlinear damping. 
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•  Backup material 



 
 

Overview of advanced computing/modeling using  
IMPACT-Z 

final longitudinal  
phase space 

Δ
 γ

> 100, 000 cores 

 The$IMPACT*Z$code$&$physics$model!
  s-based symplectic particle tracking using maps 
  Poisson solvers for 6 distinct boundary conditions 
  standard beamline elements, RF and RW wakefields 
  field, misalignment, and rotation errors 
  multi-turn tracking with simulation restart 
  efficient parallelization,  access to NERSC 

 The$IMPACT$code$suite$is$used$by$>$40$$
$$$$ins=tutes$worldwide$

  successfully applied to both electron & proton  
     machines: 

  CERN PS2 ring 
  LCLS-II linac   

  unprecedented resolution:  ~2B macroparticles 

$
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z (mm) 

Collaboration with teams at RadiaSoft and FNAL, who are modeling IOTA using SYNERGIA. 



 
 

The IOTA ring : a test bed for strategies designed to 
mitigate space charge-induced beam halo. 
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•  Possible strategies: electron lenses/columns, nonlinear integrable lattices 

•  Nonlinearity     tune spread “washes out” coherent space charge instabilities 
•  Integrability     ensures orbits are regular and remain bounded (no chaos)  

•  Integrable Optics Test Accelerator (IOTA) 

S.Nagaitsev, IOTA Program 26 

Integrable Optics at IOTA 
• Main goals for studies with a pencil electron beam:  

� Demonstrate a large tune spread of ~1 (with 4 lenses) without degradation of 
dynamic aperture ( minimum 0.25 ) 

� Quantify effects of a non-ideal lens and develop a practical lens (m- or e-lens) 

FNAL Concept: 2-m long 
nonlinear magnet 

SBIR Phase I and II:  
Radiabeam Technologies 

FMA, fractional tunes

Small amplitudes
(0.91, 0.59)

Large amplitudes

0.5 1.0

0.5

1.0

νx

νy

A single 2-m long nonlinear lens  
creates a tune spread of ~0.25 NA-PAC13: F. Shea et al., 

“Measurement of Nonlinear 
Insert Magnets” 

- Novel accelerator physics:  strongly nonlinear design 
- Experimental test bed for SC mitigation schemes 
- Run first with electrons, then low-energy protons 
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FIG. 1: Histogram plots of the 2D phase space projections initially (left) and after 500 passes (right) for the linear
lattice. Blue dots indicate particles outside of 2 RMS beam radius. The pre-halo indicated by the blue dots

uniformly fills the projections and accounts for 1% of the total beam current.

FIG. 2: Histogram plots initially (left) and after 500 passes (right) for the IEL. Note the hourglass shape of the
properly matched IEL beam.

ple set of Poincaré surfaces of section for five particles is
shown in figure 3.

By appearance this would seem to indicate that space
charge has broken the integrability of the trajectories,
but they remain bounded. The exact details of this plot
are di�cult to divine in real space, but in Fourier space it
is transparent. The tune diagram in figure 4 shows that
particles in the IEL, even with similar amplitudes for
their nonlinear oscillations, have di↵erent frequencies of
motion, and in many cases have relatively strong subhar-

monics. Therefore, if space charge drives a particle from
one amplitude to another in the IEL, its oscillations will
have a di↵erent tune. We observed similar e↵ects in the
chaotic bounded octupole lattice and nearly-integrable
FODO lattice cases, and will elaborate on this in future
publications.

The recent work in [11] has developed a new paradigm
for designing highly-nonlinear particle accelerator lattices
that simultaneously demonstrate strong frequency shift
with amplitude and integrable two-dimensional single-
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FIG. 1: Histogram plots of the 2D phase space projections initially (left) and after 500 passes (right) for the linear
lattice. Blue dots indicate particles outside of 2 RMS beam radius. The pre-halo indicated by the blue dots

uniformly fills the projections and accounts for 1% of the total beam current.

FIG. 2: Histogram plots initially (left) and after 500 passes (right) for the IEL. Note the hourglass shape of the
properly matched IEL beam.

ple set of Poincaré surfaces of section for five particles is
shown in figure 3.

By appearance this would seem to indicate that space
charge has broken the integrability of the trajectories,
but they remain bounded. The exact details of this plot
are di�cult to divine in real space, but in Fourier space it
is transparent. The tune diagram in figure 4 shows that
particles in the IEL, even with similar amplitudes for
their nonlinear oscillations, have di↵erent frequencies of
motion, and in many cases have relatively strong subhar-

monics. Therefore, if space charge drives a particle from
one amplitude to another in the IEL, its oscillations will
have a di↵erent tune. We observed similar e↵ects in the
chaotic bounded octupole lattice and nearly-integrable
FODO lattice cases, and will elaborate on this in future
publications.

The recent work in [11] has developed a new paradigm
for designing highly-nonlinear particle accelerator lattices
that simultaneously demonstrate strong frequency shift
with amplitude and integrable two-dimensional single-

nonlinear magnetic insert 

using conventional linear design using nonlinear integrable design 

1S. Webb et al, p. 2961, IPAC 2012  

nonlinear decoherence1 

halo 

Fermilab 



 
 

Summary of spatial projections for revised matched 
distributions in the D&N potential 
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Nonlinear KV 

Nonlinear Waterbag 

Nonlinear Gaussian 
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Shown for 
τ = 0.4, 

<H> = 0.2 
(dimensionless) 



 
 

Nonlinear Waterbag Beam in the IOTA Lattice –  
Spatial profiles are well-preserved across the arc 
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Horizontal profile 

Arc entry 
Arc exit 

PX PY

Y 

PX PY

Y 

Turn 350 

Turn 700 

Arc entry 
Arc exit 

X, Y are dimensionless; 
singularities located 
at (X,Y)=(±1,0) 

Vertical profile 



 
 

Smooth focusing waterbag model of equilibrium in the 
linear IOTA lattice 
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Hamiltonian: 

Due to symmetry under rotation, H is integrable with a second invariant given by                                   . 

self-consistent 
space charge 
potential 
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Distribution function: Spatial density: 
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Smooth focusing waterbag model of equilibrium in the 
linear IOTA lattice 
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Hamiltonian expressed using zero-current action-angle variables: 

H(�
x

, I
x
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, I
y
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Input parameters: 
1)  rms emittance:  εx = 2 mm-mrad 
2)  undepressed tune advance A to B:  Qx = 5.03 
3)  space charge tune depression:  ΔQx = -0.03 
4)  length of arc A to B:  Larc = 38.1682 m 
 
Model parameters:  
k0 = 0.828 m-1,   k1 = 66.355 m-1 

a = 3.817 mm,   Hmax = 4.995 mm-mrad 
 
Checks:  σx = 3.118 mm,  I = 4.85 mA 

normalized 
coordinates 

Larc 

insert gap 
1.8 m A B 

Matched to an rms 
equivalent KV beam.1 

 
Examine the evolution 
of the zero-current 
invariants (actions). 

1S. M. Lund et al, Phys. Rev. ST – Accel. Beams 12, 114801 (2009)  

arc 


