A new approach to calculating dynamic friction for magnetized electron coolers – relevance to future IOTA experiments and to EIC designs

David Bruhwiler,

Stephen Webb, Dan T. Abell & Yury Eidelman

Fermilab Workshop on Megawatt Rings & IOTA/FAST Collaboration Meeting

9 May 2018 – Batavia, IL

This work is supported by the US DOE, Office of Science, Office of Nuclear Physics, under Award # DE-SC0015212.

Office of Science

Motivation – Nuclear Physics

- Electron-ion colliders (EIC)
 - high priority for the worldwide nuclear physics community
- Relativistic, strongly-magnetized electron cooling
 - may be essential for EIC, but never demonstrated

eRHIC concept from BNL

JLEIC concept from Jefferson Lab

Idea for Electron Cooling is 50 Years Old

- Budker developed the concept in 1967
 - G.I. Budker, At. Energ. 22 (1967), p. 346.
- Many low-energy electron cooling systems:
 - continuous electron beam is generated
 - electrons are nonrelativistic & very cold compared to bunches
 - electrons are magnetized with a strong solenoid field
 - suppresses transverse temperature & increases friction
- Fermilab has shown cooling of relativistic p-bar's
 - S. Nagaitsev et al., PRL 96, 044801 (2006).
 - ~5 MeV e-'s (γ ~ 9) from a DC source

radiasoft

- The electron beam was **not** magnetized
- Relativistic magnetized cooling not yet demonstrated
 - electron cooling at $\gamma \sim 100$ has not been demonstrated
 - a non-magnetized concept was developed for RHIC
 - Fedotov et al., Proc. PAC, THPAS092 (2007).

Risk Reduction is Required for Relativistic Coolers

- eRHIC, JLEIC both need cooling at high energy $- 100 \text{ GeV/n} \rightarrow \gamma \approx 107 \rightarrow 55 \text{ MeV bunched electrons, } \sim 1 \text{ nC}$
- Electron cooling at γ ~100 requires different thinking
 - friction force scales like $1/\gamma^2$ (Lorentz contraction, time dilation)
 - challenging to achieve the required dynamical friction force
 - not all of the processes that reduce the friction force have been quantified in this regime → significant technical risk
 - normalized interaction time is reduced to order unity
 - $\tau = t\omega_{pe} >> 1$ for nonrelativistic coolers

radiasoft

- $\tau = t\omega_{pe} \sim 1$ (in the beam frame), for $\gamma \sim 100$
 - violates the assumptions of introductory beam & plasma textbooks
 - breaks the intuition developed for non-relativistic coolers
 - as a result, the problem requires careful analysis

Goals

- Simulate magnetized friction force
 - include all relevant real world effects
 - e.g. incoming beam distribution
 - include a wide range of parameters
 - cannot succeed via brute force
 - improved understanding is required

- Include key aspects of magnetized e- beam transport
 - imperfect magnetization
 - space charge
 - field errors

from Zhang et al., MEIC design, arXiv (2012)

Asymptotic model for cold, strongly magnetized electrons

$$\begin{split} \mathbf{F}_{\parallel} &= -\frac{3}{2} \,\omega_{pe}^{2} \,\frac{(Ze)^{2}}{4\pi\varepsilon_{0}} \Bigg[\ln \Bigg(\frac{\rho_{\max}^{A}}{\rho_{\min}^{A}} \Bigg) \Bigg(\frac{V_{\perp}}{V_{ion}} \Bigg)^{2} + \frac{2}{3} \Bigg] \frac{V_{\parallel}}{V_{ion}^{3}} & r_{L} = V_{ms,e,\perp} / \Omega_{L} \Big(B_{\parallel} \Big) \\ \rho_{\min}^{A} = \max \big(r_{L}, \rho_{\min} \big) \\ \rho_{\max}^{A} = \min \big(r_{beam}, \rho_{\max} \big) \\ \mathbf{F}_{\perp} &= -\omega_{pe}^{2} \,\frac{(Ze)^{2}}{4\pi\varepsilon_{0}} \ln \Bigg(\frac{\rho_{\max}^{A}}{\rho_{\min}^{A}} \Bigg) \frac{\left(0.5V_{\perp}^{2} - V_{\parallel}^{2} \right)}{V_{ion}^{2}} \frac{V_{\perp}}{V_{ion}^{3}} & \rho_{\max} = V_{rel} / \max \big(\omega_{pe}, 1/\tau \big) \\ V_{rel} = \max \big(V_{ion}, V_{e,rms,\parallel} \big) \\ V_{ion}^{2} = V_{\parallel}^{2} + V_{\perp}^{2} \end{split}$$

Ya. S. Derbenev and A.N. Skrinsky, "The Effect of an Accompanying Magnetic Field on Electron Cooling," Part. Accel. 8 (1978), 235.

Ya. S. Derbenev and A.N. Skrinskii, "Magnetization effects in electron cooling," Fiz. Plazmy 4 (1978), p. 492; Sov. J. Plasma Phys. 4 (1978), 273.

radiasoft

I. Meshkov, "Electron Cooling; Status and Perspectives," Phys. Part. Nucl. 25 (1994), 631.

Including thermal effects

Integrating D&S calculation over thermal electron population:

D.V. Pestrikov, (2002), preprint.

$$F_{\parallel}(0,V_{\parallel}) = -V_{\parallel} \frac{4\pi Z^2 e^4 n_e L_M}{m \Delta_{e,\parallel}^3} \exp\bigg(-\frac{V_{\parallel}^2}{2\Delta_{e,\parallel}^2}\bigg)$$

radiasoft

A.V. Fedotov, D.L. Bruhwiler and A.O. Sidorin, "Analysis of the magnetized friction force," Proc. High Brightness (Tsukuba, 2006).

VORPAL modeling of binary collisions clarified differences in formulae for magnetized friction

- D&S asymptotics are accurate for ideal solenoid, cold electrons not warm
- Parkhomchuk formula often works for typical parameters, but not always
- 3D quad. of D&S with e- dist. works better (modified r_{min}, ideal solenoid)
- In general, direct simulation is required

radiasoft

Detailed simulations of magnetized friction:

WEAY04

Proceedings of HB2006, Tsukuba, Japan

Analysis of the magnetized friction force *

A.V. Fedotov[†], BNL, Upton, NY 11973, USA D.L. Bruhwiler, Tech-X, Boulder, CO 80303, USA A.O. Sidorin, JINR, Dubna, Russia

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 9, 074401 (2006)

Numerical study of the magnetized friction force

A. V. Fedotov,¹ D. L. Bruhwiler,² A. O. Sidorin,³ D. T. Abell,² I. Ben-Zvi,¹ R. Busby,² J. R. Cary,^{2,4} and V. N. Litvinenko¹ ¹Brookhaven National Laboratory, Upton, New York 11973, USA ²Tech-X, Boulder, Colorado 80303, USA

⁴University of Colorado, Boulder, Colorado 80309, USA (Received 14 November 2005; published 7 July 2006)

Simulating the dynamical friction force on ions due to a briefly co-propagating electron beam

George I. Bell^{a,*}, David L. Bruhwiler^a, Alexei Fedotov^b, Andrey Sobol^a, Richard S. Busby^a, Peter Stoltz^a, Dan T. Abell^a, Peter Messmer^a, Ilan Ben-Zvi^b, Vladimir Litvinenko^b

^a Tech-X Corporation, Accelerator Technology, 5621 Arapahoe Avenue, Suite A, Boulder, CO 80303, United States
^b Brookhaven National Lab, Upton, NY 11973, United States

Detailed simulations of magnetized friction:

Figure 2: Longitudinal component of the force [eV/m] vs velocity $[\times 10^5 \text{ m/s}]$ for zero transverse angle $\theta = 0$ with respect to the magnetic field lines. VORPAL results: dots with error bars; Eq. (4) - solid line.

Phys. 227, 8714 (2008).

JLab EIC Design:

radiasoft

Can we quantify the required solenoidal field quality?

- No, we cannot
 - Parkhomchuk formula provides a parametric knob
 - Derbenev and Skrinsky do not offer quantitative guidance
- Can we quantify the effects of space charge forces?
 No, we cannot
- Can we quantify the effects of non-Gaussian e- beam phase space distributions?
 - No, we cannot

A new dynamical friction calculation is underway...

- We follow the approach described by Y. Derbenev
- However, we begin from a new starting point
 - analytic momentum transfer between ion and magnetized e-
 - proceed step by step with calculation
- Calculation is defined by the following considerations:

$$\vec{E}(\vec{r},\vec{v},t) = \langle \vec{E}^0 \rangle (\vec{r},t) + \langle \Delta \vec{E} \rangle (\vec{r},\vec{v},t) + \vec{E}^{fl}(\vec{r},\vec{v},t)$$
(1.1)

$$\vec{F} = -ze\langle\Delta\vec{E}\rangle(\vec{r},\vec{v},t)\big|_{\vec{r}=\vec{r}(t),\vec{r}(t)=\vec{v}}$$
(1.2)

Y. Derbenev, "Theory of Electron Cooling," arXiv (2017); https://arxiv.org/abs/1703.09735

THEORY OF ELECTRON COOLING

Yaroslav Derbenev*

Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

*Translated from Russian by V.S. Morozov, Jefferson Lab, VA 23606, USA Translation supported by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce this manuscript for U.S. Government purposes.

Directly integrate Δp_{ion} to obtain friction force?

$$F = -\frac{n_{\rm e}m_{\rm e}}{T} \iint_{\mathbb{R}^3} \int d^3v \iiint_V dr dz d\varphi \,\Delta v(T, r, \varphi, z, v) r p(v)$$

radiasoft

- Straightforward integration includes space charge, etc.
 this approach worked for VORPAL/VSim simulations (w/ effort)
- Problematic, so we follow Derbenev et al.

The required steps are straightforward in principle:

- Calculate the perturbed e-velocities
 - due to a single ion
 - initially, we consider purely longitudinal motion
- Obtain time-derivative of perturbed E-field
 - via Poisson and continuity equations
- Integrate in time to get $\delta \mathsf{E}$
 - initially, this is for only a single value of e-velocity
 - it is necessary to integrate over thermal e-velocities
- Integrate δE along ion trajectory to obtain <F> - hence, this is a 2nd-order effect, ~(Ze²)² xx
- Present efforts:

adiasoft

- find best way to integrate <F> over e- distribution functions
- consider transverse ion motion
- numerical approaches, testing, etc.

Hamiltonian for 2-body magnetized collision:

$$H(\vec{x}_{ion}, \vec{p}_{ion}, \vec{x}_{e}, \vec{p}_{e}) = H_{0}(\vec{p}_{ion}, y_{e}, \vec{p}_{e}) + H_{C}(\vec{x}_{ion}, \vec{x}_{e})$$
$$\vec{B} = B_{0} \hat{z} \qquad \vec{A} = -B_{0}y \hat{x} \qquad p_{e,x} = m_{e}(v_{e,x} - \Omega_{L}y_{e})$$

$$H_{0}(\vec{p}_{ion}, y_{e}, \vec{p}_{e}) = \frac{1}{2m_{ion}} \left(p_{ion,x}^{2} + p_{ion,y}^{2} + p_{ion,z}^{2} \right) + \frac{1}{2m_{e}} \left[\left(p_{e,x} + eB_{0}y_{e} \right)^{2} + p_{e,y}^{2} + p_{e,z}^{2} \right]$$
$$H_{C}(\vec{x}_{ion}, \vec{x}_{e}) = \frac{-Ze^{2}}{4\pi\varepsilon_{0}} / \sqrt{(x_{ion} - x_{e})^{2} + (y_{ion} - y_{e})^{2} + (z_{ion} - z_{e})^{2}}$$

Resulting equations of motion, in the standard drift-kick symplectic form: $M(\Delta t) = M_0(\Delta t/2)M_c(\Delta t)M_0(\Delta t/2)$

radiasoft

D.L. Bruhwiler and S.D. Webb, "New algorithm for dynamical friction of ions in a magnetized electron beam," in *AIP Conf. Proc.* **1812**, 050006 (2017); <u>http://aip.scitation.org/doi/abs/10.1063/1.4975867</u>

Analytic calculation of $\Delta \mathbf{p}_{ion}$ (1)

$$C_{1} = \left(x_{ion} - \frac{p_{gc}}{m_{e}\Omega_{e}}\right)^{2} + \left(y_{ion} - y_{gc}\right)^{2} + \left(z_{ion} - z_{e}\right)^{2} + \frac{2}{m_{e}\Omega_{e}}J$$
(14a)

$$C_{2} = 2(x_{ion} - x_{gc})v_{ion,x} + 2(y_{ion} - y_{gc})v_{ion,y} + 2(z_{ion} - z_{e})(v_{ion,z} - v_{ez})$$
(14b)

$$C_{3} = v_{ion,x}^{2} + v_{ion,y}^{2} + \left(v_{ion,x} - v_{ez}\right)^{2}$$
(14c)

$$b = \left[C_1 + C_2 T + C_3 T^2\right]^{1/2} \qquad \Delta = 4C_1 C_3 - C_2^2 \tag{14d}$$

$$D_{1} = \left[\frac{2C_{3}T + C_{2}}{b} - \frac{C_{2}}{\sqrt{C_{1}}}\right]$$
(14e)

$$D_{2} = \left[\frac{2C_{1} + C_{2}T}{b} - 2\sqrt{C_{1}}\right]$$
(14f)

Analytic calculation of $\Delta \mathbf{p}_{ion}$ (2)

A radias oft

$$\Delta p_{ion,x} = \frac{-2\alpha}{\Delta} \left[\left(x_{ion} - p_{gc} / m_e \Omega_e \right) D_1 - \left(p_{ion,x} / m_{ion} \right) D_2 \right]$$
(15a)

$$\Delta p_{ion,y} = \frac{-2\alpha}{\Delta} \left[\left(y_{ion} - y_{gc} \right) D_1 - \left(p_{ion,y} / m_{ion} \right) D_2 \right]$$
(15b)

$$\Delta p_{ion,z} = \frac{-2\alpha}{\Delta} \left[\left(z_{ion} - z_e \right) D_1 - \left(\frac{p_{ion,z}}{m_{ion}} - \frac{p_{ez}}{m_e} \right) D_2 \right]$$
(15c)

$$\Delta p_{gc} = -\Delta p_{ion,x} \qquad \Delta y_{gc} = -\Delta p_{ion,y} / m_e \Omega_e \tag{15d}$$

Time-explicit vs analytic shows agreement:

radiasoft

- Two small parameters are required:
 - Larmor radius must be small compared to impact param.

averaging

- Kinetic energy must be large compared to max potential energy
 - perturbative

Choice of coordinate system is important:

$$\Delta v_{e,z} = \frac{Ze^2}{m_e} \left\{ \left[x_{gc}^2 + y_{gc}^2 + \rho_{gc}^2 + z_e^2 \right]^{-1/2} - \left[x_{gc}^2 + y_{gc}^2 + \rho_{gc}^2 + (z_e - v_{rel}T)^2 \right]^{-1/2} \right\}$$

$$v_{rel} = v_{i,z} - v_{e,z}$$

$$\frac{\partial \vec{E}}{\partial T} = -\vec{J} \qquad r^2 = x_{gc}^2 + y_{gc}^2$$

$$\frac{\partial E_z}{\partial T}_{r=0} = \frac{Ze^2}{m_e} \left\{ \left[\rho_{gc}^2 + z_e^2 \right]^{-1/2} - \left[\rho_{gc}^2 + (z_e - v_{rel}T)^2 \right]^{-1/2} \right\}$$

Integrate twice to obtain friction force:

$$E_{z}(r=0) = (n_{0}e)\frac{Ze^{2}}{m_{e}v_{rel}} \left\{ T\left[\rho_{gc}^{2} + z_{e}^{2}\right]^{-1/2} + \frac{1}{v_{rel}}ln\left[\frac{\left[\rho_{gc}^{2} + z_{e}^{2}\right]^{1/2} + z_{e}}{\left[\rho_{gc}^{2} + (z_{e} - v_{rel}T)^{2}\right]^{1/2} + (z_{e} - v_{rel}T)}\right] \right\}$$

Let $z_e = v_{i,z}T$ and then integrate over T to obtain:

radiasoft

$$< F > = (n_0 e) \frac{n_0 (Ze^2)^2}{m_e v_{rel} T} \Biggl\{ \frac{T}{v_{rel}} ln \left(\left[\rho_{gc}^2 + \left(v_{i,z} T \right)^2 \right]^{1/2} + v_{i,z} T \right) - \frac{v_{e,z}}{v_{i,z}^2 v_{rel}} \left(\left[\rho_{gc}^2 + \left(v_{i,z} T \right)^2 \right]^{\frac{1}{2}} - \rho_{gc} \right) \Biggr\} - \frac{T}{v_{rel}} ln \left(\left[\rho_{gc}^2 + \left(v_{e,z} T \right)^2 \right]^{1/2} + v_{e,z} T \right) - \frac{1}{v_{e,z} v_{rel}} \left(\left[\rho_{gc}^2 + \left(v_{e,z} T \right)^2 \right]^{\frac{1}{2}} - \rho_{gc} \right) \Biggr\}$$

There is an integrable singularity for cold electrons. The challenge now is to integrate over thermal velocities

Long-term goals: Include other effects in Magnus Expansion

$$H(\vec{x}_{ion}, \vec{p}_{ion}, \vec{x}_e, \vec{p}_e) = H_0(\vec{p}_{ion}, y_e, \vec{p}_e) + H_C(\vec{x}_{ion}, \vec{x}_e) + H_{space-charge}(\vec{x}_{ion}, \vec{x}_e) + H_{solenoid-field-errors}(??)$$

- Quantitative treatment of space charge & field errors?
 - space charge should work
 - field errors are more challenging
- Requires generalization of Magnus expansion
 - we are optimistic this can be done

Future Electron cooling experiments in IOTA

- Could be used to test friction force equations...?
 - RadiaSoft is interested to collaborate

JSPEC – new software for IBS and e- cooling

JSPEC on GitHub, <u>https://github.com/zhanghe9704/electroncooling</u> Primary developer is He Zhang of JLab

A new GUI for JSPEC is under development, as part of the open source cloud computing initiative, Sirepo <u>http://sirepo.com</u>

Thank You! Questions?

