

Inverse Compton Scattering at FAST

Alex Murokh (substituting for Philippe Piot, NIU) RadiaBeam Technologies LLC.

Fermilab Workshop on Megawatt Rings and IOTA/FAST Collaboration Meeting, May 10 2018

Outline

Motivation and background for ICS program at FAST

- FAST ICS Project Overview
- Future opportunities at FAST

Monochromatic MeV gamma rays applications

- Nuclear spectroscopy and NRF for NP R&D
- NRF for SNM detection
- Nuclear waste inspection
- Medical isotopes production
- Stand off active interrogation via photofission
- cargo inspection

R. Hajima, Japan Atomic Agency ERL Group (2008).

J.L. Jones et al., Neutrons Workshop at ONR, 2006

Disadvantages of the bremsstrahlung source

- Materials differentiation requires multi-color imaging
- Bremsstrahlung target produces continuous spectrum

Inverse Compton Scattering (ICS)

- Scattering intense ultrafast optical laser pulse off GeV class e-beam produces narrow bandwidth directional gamma ray beam
- Maximum practical photon flux per interaction ~ 10⁷ in 1 % bandwidth
- Practical applications intensities require 10³ 10⁵ interactions/second

ICS gamma source features

- Uniqueness light sources do not reach MeV
- Tunability
- High efficiency at high energy $E_{ph}/E_e \sim \gamma$
- Favorable transverse brightness scaling ($\sim \gamma^3$)
- Directionality ($\sim 1/\gamma$)
- Need compactness and high r.r. (eventually, at the same time)

F.V. Hartemann et al., PR ST AB 8, 100702, 2005

Recirculated ICS experiment

- Used CO2 active cavity to study ICS in a pulse train regime (40 MHz)
- Demonstration for the first time of the significant ICS photon yield gain via pulse train interaction (2015)

A. Ovodenko et al., Appl. Phys. Lett. 109, 253504 (2016)

Slide 8 of 21

ICS at FAST

Future opportunities

Inverse Compton Scattering (ICS) at FAST

- Demonstrate and optimize ICS performance with SCRF linac at 3 MHz and > 1000 pulses per train
- Enable high flux tunable output available for users and applications R&D

ICS at FAST

Future opportunities

Slide 9 of 21

Outline

- Motivation and background for ICS program at FAST
- FAST ICS Project Overview
- Future opportunities at FAST

Team Members & Collaborators

- Philippe Piot (NIU faculty + Fermilab Scientist)
- Daniel Mihalcea (research scientist)
- Matthew Urfer (MS)
- Aaron Fetterman (PhD, Joining 5/15)
- Aleksei Halavanau (Physics student)

Northern Illinois

J**niversitv**

- Alex Murokh (research scientist)
- Tara Campese (engineering support)

Fermilab • Jinhao Ruan (laser scientist)

			•
ΝЛ	At	vat	inn
1 1 1	บน	ναι	IUII

Technical Objectives

- Use IR portion of the photoinjector laser output to develop a high-repetition rate interaction region synched to the existing SRF linac
 - 1. Design, develop, install and commission the interaction region (including ICS chamber and final focus systems)
 - 2. Upgrade the laser currently available
 - 3. Develop a recirculating optical cavity
 - 4. Combine SRF linac with optimized optical cavity to produce high-flux gamma rays

Schematics of the interaction region

Beam dynamics optimization

- Performed cathode-to-IP simulations
- Comprehensive optimizations

N /		
IVI	otivation	
	ouvation	

ICS performance modeling

Initial working point at low charge (~ 100 pC)

Electron beam		Laser beam	
Beam energy	259 MeV	Wavelength	1053 nm
Beam charge	100 pC	Pulse energy	100 mJ
Energy spread	0.06 %	Bandwidth	0.2 %
Emittance (n)	0.34 µm	Etendue	0.1 µm
Duration	5.0 ps	Duration	3.0 ps
Beam size x/y	12/13 µm	Waist	30 µm

Opening angle	100 µrad	200 µrad	> 10 mrad
Brightness	3.9 x 10 ¹⁸	3.4 x 10 ¹⁸	4.1 x 10 ¹⁷
Flux (photons)	5.1 x 10 ⁴	3.9 x 10 ⁵	3.0 x 10 ⁶
Bandwidth (%)	0.24 %	0.52 %	49.2 %
Spectral density	4.0 /eV-s	6.6 /eV-s	1.1 /eV-s

Motivation

✓ ICS at FAST

Future opportunities

Present Status

- Identified beamline location
- 100-m transport line for IR pulse under way
- one high-energy laser amplifier has been procured
- UHV chamber housing IP under design
- PMQs in progress

Motivation

✓ ICS at FAST

Future opportunities

Slide **16 of 21**

Outline

- Motivation and background for ICS program at FAST
- FAST ICS Project Overview
- Future opportunities at FAST

IFEL-ICS-TESSA Optical Energy Recovery

One can go from 1 MeV to 10 MeV using laser acceleration:

- **1.** NCRF 150 MeV injector operating in pulse train mode
- **2.** ~ 10 TW igniter laser (i.e. 1064 nm)
- **3.** IFEL 1 GeV energy booster stage
- **4.** ICS interaction chamber
- 5. TESSA decelerator for laser power recovery

TESSA Oscillator

- TESSA offers possibility of very high efficiency e-beam to light energy conversion (~10 % vs. ~0.1 % for a conventional SASE FEL)
- There are industrial opportunities for such source (i.e. EUV lithography)
- The ongoing project at APS LEA beamline will explore TESSA at 266 nm, and the next step is an SRF linac driven oscillator (TESSO)

Parameter	Value
E-beam energy	250 MeV
Current	500 A
Charge	1 nC
Emittance	1 µm
Repetition rate	1 MHz
Undulator length	4 m
Laser wavelength	1 µm
Rayleigh range	48 cm
Laser waist	1.8 m
Input peak power	50 GW
Output peak power	127 GW
Net efficiency	54%
<u>Average power</u>	<u>120 kW</u>

- 250 MeV * 500 A = 125 GW peak beam power
- 250 MeV * 1 mA = 250 kW average beam power
- Seed laser power is 50 GW (40% of beam power)
- Diffraction of stimulated radiation limits undulator length to 4 m to keep gap small
- Prebunching to capture more (nearly all) charge increases net efficiency to 50%

For more info see recent UCLA workshop on high efficiency FEL: <u>https://conferences.pa.ucla.edu/hi</u> <u>gh-efficiency-free-electron-lasers/</u>

Motivation

Conclusions and Acknowledgement

- Compact tunable gamma ray source could find multiple applications
- FAST facilities offers excellent opportunities to study long pulse train ICS process and high flux applications
- NIU-Fermilab-RBT collaboration FAST ICS project is under construction (experimental phase within a year)
- In the future, FAST ICS program has a natural synergy with TESSO, and also IFEL-ICS high duty cycle R&D programs
- Acknowledgement:
 - DNDO ARI support
 - NIU, Fermilab, RBT personnel contributions and encouragements
- Thank you !