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Need high rep rate & charge: 

FAST (MHz, nC scale)

HEP: Need high luminosity for high event rate

Need low emittance & energy spread for small final focus size: 

Advanced PWFA (beam-loaded Trojan Horse: nmrad, <0.01%)

Light sources: Need high brightness, low 

emittance, low energy spread, high rep rate

Emittance criterion:

Energy spread criterion:

6D brightness:

FEL gain length:
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Spatiotemporal synchronization & alignment, and multi-purpose diagnostics

GW

 Various aspects of PWFA (injection, plasma photocathode, tailored preionization, 

staging..) need fs-µm-scale synchronization and alignment

 fs-µm-scale effects naturally difficult to diagnose

 Plasma-photonic spatiotemporal alignment: a magnifying glass, which transforms 

fs-µm-scale interaction signatures to observables on µs-mm-scale

 Highlights importance of intermediate timescale and effect: plasma electron-based 

collisional ionization

 Has huge development potential in particular for high rep rate interaction and 

diagnostics

 Requires very small gas/plasma volume (better not go full plasma for first 

experiments in SC environment) and could be candidate for first plasma 

experiment at FAST
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Spatiotemporal synchronization & alignment on fs-µm scale 
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 Relativistic electron beam propagates through gas volume, e.g. H2/He or else

 Due to low impact ionization cross sections, no significant plasma is generated

 Sub-mJ, ~60 fs Ti:Sapphire laser pulse generates ~50 µm diameter plasma torch, 

e.g. in 90° geometry 

 A simple integrating CCD observes the plasma afterglow: if laser is misaligned or 

comes later, the pure laser-generated plasma afterglow is observed (b) 

 If laser is aligned and overlaps with electron beam trajectory, and generates 

plasma torch before electron beam arrival, a substantially enhanced plasma 

afterglow is observed (c)!
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Spatiotemporal synchronization & alignment on fs-µm scale 
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GW

 Seed plasma 

electrons heated to 

keV energies, 

where impact 

ionization cross 

sections in neutral 

gas are highest 

 Seed plasma 

electrons oscillate 

around core plasma, 

impact ionize further 

surrounding gas 

 Additional plasma 

production over 

extended time and 

spatial scales due to 

surface plasma 

waves
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Realized within E210 at SLAC FACET: spatiotemporal sync. & alignment

 Alignment scan for 

laser early case 

(~50 ps) allows 

robust online 

alignment

 Timing scan for aligned case 

allows  time-of-arrival 

measurement 

 Unique method which works with 

focused, intense beams 
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Huge development potential of method, in particular with high rep rate

 Fundamental question:  what happens in a PWFA plasma over ps-ns and mm-cm 

scales? 

 In E210 at FACET, plasma afterglow was observed only at one wavelength (H2/He), 

integrated over ms

 Next steps: explore effect spatially, temporally (streak camera?), and spectrally 

resolved.. 

 Investigate surface waves, radiation production 

 Explore with different angles than 90°

 Explore with multi-torches

 Explore plasma kicker

 Machine learning of afterglow signature?  

 Ultra-versatile bunch diagnostics
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Requirements and future steps

 mJ-class laser system which is capable to ionize small seed plasma filament

 Gas volume

 Next steps: increase plasma volume to go to plasma lensing and then PWFA..

 Lase upgrade: mJ  Joule-class laser system for preionization of larger volume, 

which is required for PWFA. Optically generated plasma is the superior method 

plasma generation!

 Explore optical downramp (plasma  torch injection) and plasma photocathode at high 

rep rate (emittance growth test bed requires novel diagnostic methods): If emittance 

preservation during staging can be shown to the e.g. 1 µm rad level, who knows if it 

will work to the nm rad level? Will you see this only after having built 100 stages and 

emittance growth has accumulated?
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Optical density downramp injection: Plasma torch

GW

 Problem with density downramp schemes: how to 

shape and reliably produce density downramps? 

 Approach: use laser to produce density spike via 

ionization of higher ionization threshold medium
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Optical density downramp injection: Plasma torch

GW

 Proposed this as part of FACET Trojan Horse 

proposal in 2011

 Realized this 2016/17 at SLAC FACET



Hidding / University of Strathclyde & SCAPA: Hybrid LWFA&PWFA 12

2016: Full E210 setup with two independently tunable main laser arms, up to 5 

laser beams (1 preionization, 2 EOS, 1 Trojan photocathode, 1 E224 probing) 

from vacuum and air compressor, and SLAC linac electron beam

Spatiotemporal alignment of beams is a key challenge



Hidding / University of Strathclyde & SCAPA: Hybrid LWFA&PWFA 13

Plasma Torch injection @5 mJ simulation with Tech-X VSim & PicViz



Hidding / University of Strathclyde & SCAPA: First measurements of Trojan Horse 14

Plasma Torch injection: stable at 5 mJ laser energy, no injection at 0.5 mJ
Trojan Horse injection @0.5 mJ simulation with Tech-X VSim & PicViz



15

Torch

Trojan

vs.
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Torch

Trojan
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Exploration potential

 Investigate plasma torch and Trojan at high rep rate – plasma heating and shaping 

effects including impact ionization and surface waves important?

 Ion motion?

 Instability studies: use plasma photocathode to shape beams in form and chirp?

 Show nm emittances by using larger blowout and non-90° geometry 

 Show nm-level emittance preservation during staging?

 Realize radiation sources based on tiny emittances, spot sizes and high 6D 

brightness?

 .....

via tailored beam loading G.G. Manahan, F. Habib, Nat. Comms. 8,  15705, 2017
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 Just released (including UK version of 

“Novel Acceleration“ roadmap)

Motivation UK STFC Accelerator Review Report

Exec. Summary: “Novel Acceleration is a  priority for the future of the 

accelerator programme” .. “Novel acceleration research is centred on CLF and 

the Scottish Centre for the Application of Plasma-based Accelerators (SCAPA)”
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 Upcoming PWASC roadmap will also emphasize PWFA and intn‘l collaboration 
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Summary and conclusions

GW

 High interest to engage in beam-laser-plasma-interaction at FAST at 

Strathclyde & the UK

 Novel versatile plasma-photonic regime found which is of large interest to high 

rep-rate setups, and needs only very limited gas/plasma load

 Ionizing laser needed! 

 Straightforward path to develop this seed experimental setup to advanced 

PWFA

 Momentum is increasing to develop this as part of a US-UK collaboration


