

Electron Beam Treatment of Wastewater and Biosolids: Current State of the Science

Suresh D. Pillai, Ph.D.

Professor of Microbiology Director, National Center for Electron Beam Research an IAEA Collaborating Centre for Electron Beam Technology Texas A&M University

eBeam Technology for Cleaning, Healing, Feeding, and Shaping this World and Beyond...

Presentation Outline

- 1. Experience with high energy (10 MeV) eBeam and X-ray technology platforms
- 2. Efficacy of eBeam technology against microbial and chemical pathogens
 - 1. Conventional contaminants
 - 2. Emerging contaminants
- 3. Our commercialization strategy for the environmental industries

Experience with high energy eBeam and X-ray technologies

• 16,000 sq. feet commercial scale facility

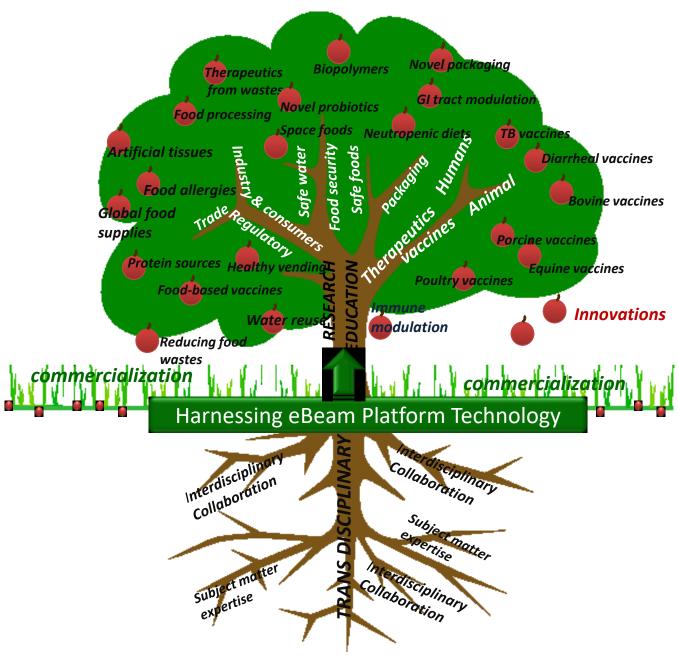
• Dual Modality facility

- High energy (10 MeV) Electron Beam technology
- High energy (5 MeV) X-Ray technology

• 3 linear accelerators

- Two eBeam accelerators (10 Mev, 15kW)
- One X-ray accelerator (5 MeV, 18 kW)
- State of the art Dosimetry
 - Alanine (Gold standard in dosimetry)
 - Radiochromic film dosimetry

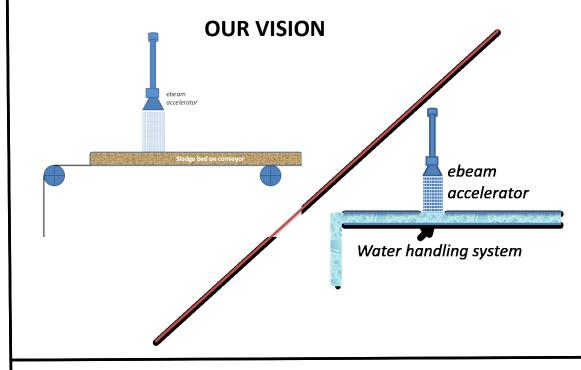
Facility inspected and certified


- FDA, USDA-FSIS, and USDA-APHIS
- 75% of Time : Commercial 25% Research FDA, USDA-APHIS, USDA-FSIS approved facility
 - Currently
 - ~ spices, pet food, medical devices, fruits, biotech products
 - 5 million lbs of fresh produce, 1 million pounds of other items

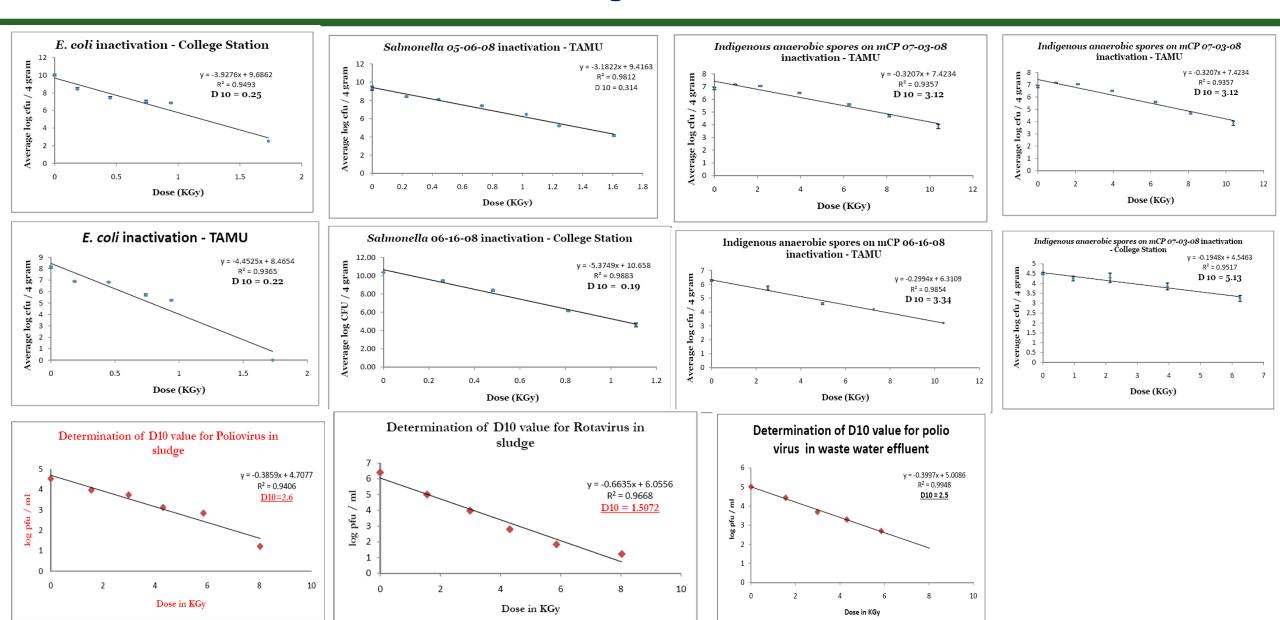
Exploiting eBeam Technologies for *Cleaning, Healing, Feeding, and Shaping* this World and <u>Beyond</u>.....

Cleaning : Environmental remediation*Healing*: Novel therapeutics*Feeding*: Food security and food safety*Shaping*: Develop bioplastics and novel polymers

...and Beyond: sterilization and disinfection solutions for NASA's Space Station and long-duration mission to asteroids and possibly Mars


Just Beam it!

Efficacy of eBeam technology against conventional and emerging pathogens and chemical contaminants


Pathogen Reduction Criteria

- Process to Further Reduce Pathogens (PFRP) processes as approved by EPA for Class A biosolids
 - Composting (55°C for 3 days)
 - Heat drying (80°C)
 - Heat treatment (180°C for 30 min)
 - Thermophilic aerobic digestion (55°C – 60°C for 10 days)
 - Pasteurization (>70°C for 30 min)
 - Irradiation (10 kGy)

- Pre-treatment of raw sewage
- Alternative to thermal hydrolysis (THP)
- Conversion of Class B to Class A sludges
- Effluent treatment
- Water Reuse
- Drinking water treatment
- Treatment plant residual remediation

eBeam Inactivation of Key Indicator Organisms and Pathogens of Concern in Sludges and Effluent

D-values of Key Indicator Organisms and Pathogens of Concern in Sludges

Target Organism	Sludge Matrix	kGy	
E.coli	Aerobic digester sample	0.26 - 0.41	
E.coli	Anaerobic digester sample	0.25 -0.35	
Spiked Salmonella sp.	Aerobic digester sample	0.18 -0.35	
Spiked Salmonella sp.	Anaerobic digester sample	0.23 -0.33	
Aerobic spores	Aerobic digester sample	2.43-4.81	
Aerobic spores	Anaerobic digester sample	2.68 - 3.08	
Anaerobic spores*	Aerobic digester sample	3.34-5.13	
Anaerobic spores*	Anaerobic digester sample	3.12	
Spiked Poliovirus	Anaerobic digester sample	2.6	
Spiked Rotavirus	Anaerobic digester sample	1.5	

If eBeam is used (10 kGy) as the a PFRP process....

Target Organism2	Sludge Matrix	D ₁₀ value (range) kGy	Log Reduction that can be achieved (conservatively)
E.coli	Aerobic digester sample	0.26 - 0.41	~ 24 logs
E.coli	Anaerobic digester sample	0.25 -0.35	~29 logs
Salmonella sp.	Aerobic digester sample	0.18 -0.35	~ 29 logs
Salmonella sp.	Anaerobic digester sample	0.23 -0.33	~ 30 logs
Aerobic spores	Aerobic digester sample	2.43-4.81	~ 2 logs
Aerobic spores	Anaerobic digester sample	2.68 - 3.08	~ 3 logs
Anaerobic spores*	Aerobic digester sample	3.34-5.13	~ 2 logs
Anaerobic spores*	Anaerobic digester sample	3.12	~ 3.2 logs
Poliovirus	Anaerobic digester sample	2.6	~ 3.8 logs
Rotavirus	Anaerobic digester sample	1.5	~ 6.6 logs

DISINFECTING AND STABILIZING BIOSOLIDS USING E-BEAM AND CHEMICAL OXIDANTS

by:

Suresh D. Pillai Texas A&M University

Robert Reimera Tulane University

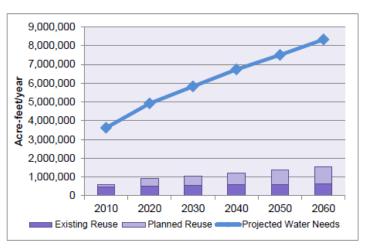
Bioresource Technology 144 (2013) 652-657

Electron beam inactivation of selected microbial pathogens and indicator organisms in aerobically and anaerobically digested sewage sludge

Chandni Praveen^a, Palmy R. Jesudhasan^{a,1}, Robert S. Reimers^b, Suresh D. Pillai^{a,*}

^a National Center for Electron Beam Research, Texas A&M University, College Station, TX, United States ^bTulane University, New Orleans, IA, United States

2009


WERF

Can eBeam Irradiation be used for Converting Class B to Class A Sludges?

- eBeam irradiation will **de-stabilize** sludge solids
- <u>There is a need</u> to couple eBeam irradiation with one or more technologies to achieve long-term stabilization to allow Class A designation
 - Ongoing research in our labs

eBeam applications for direct potable water reuse

Potable Water Needs in the US

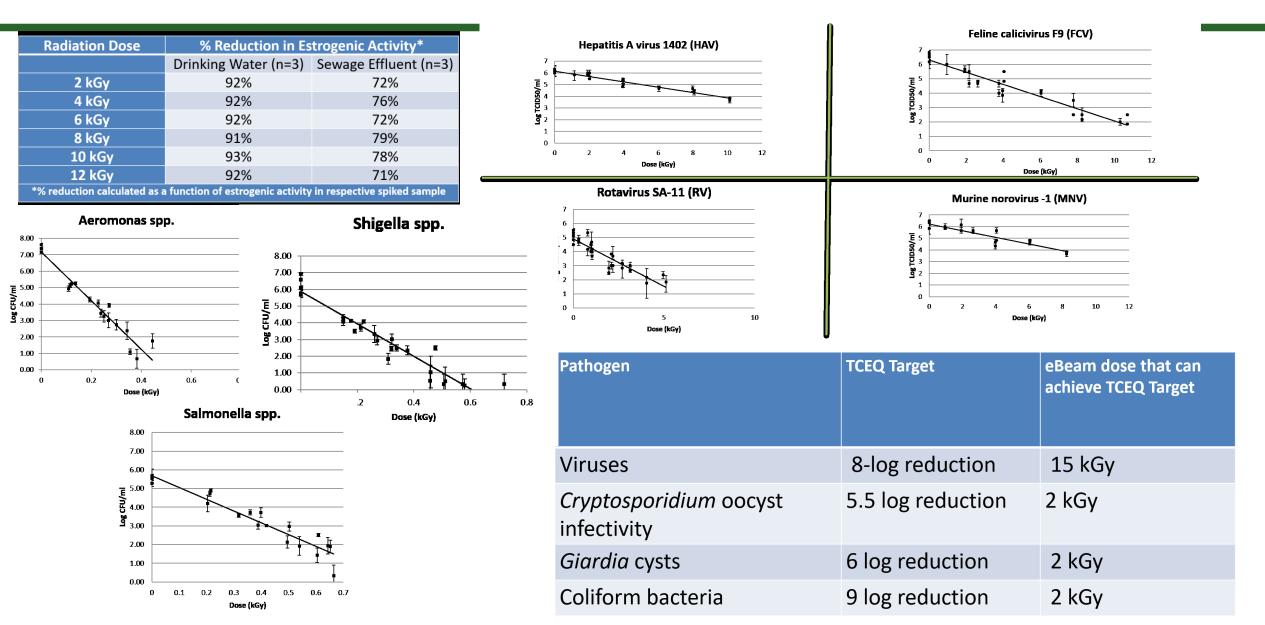
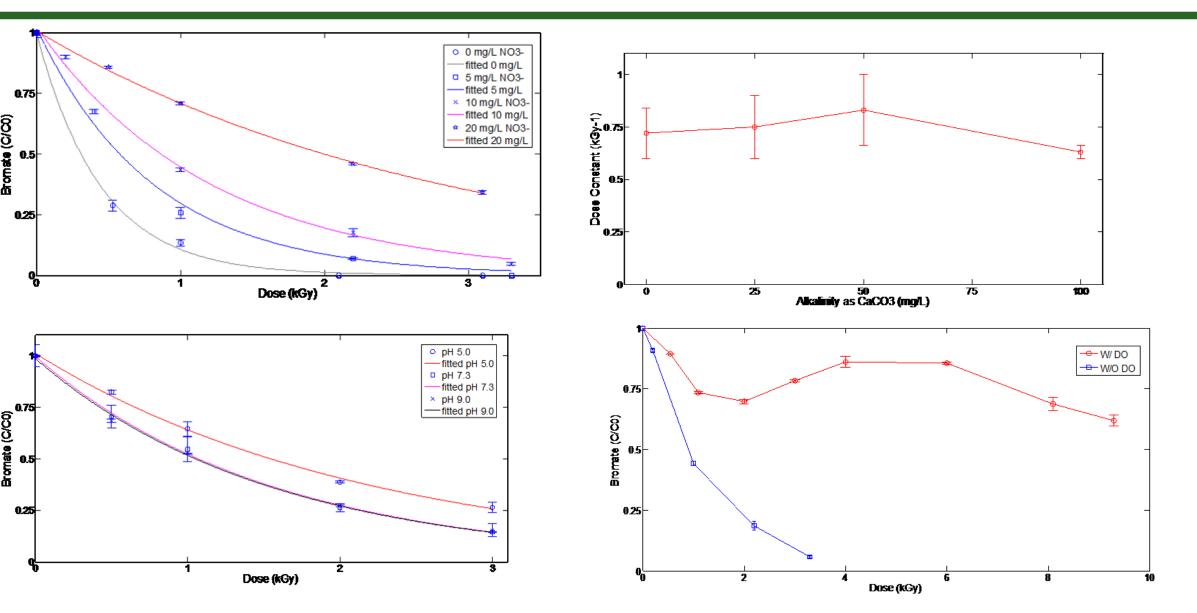
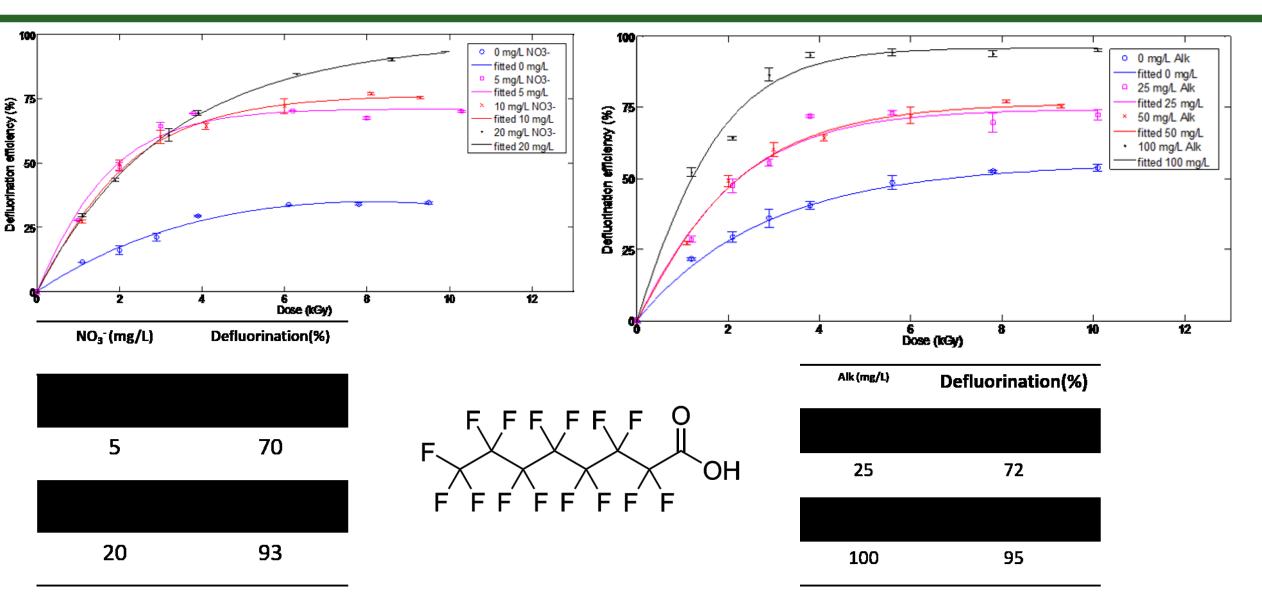
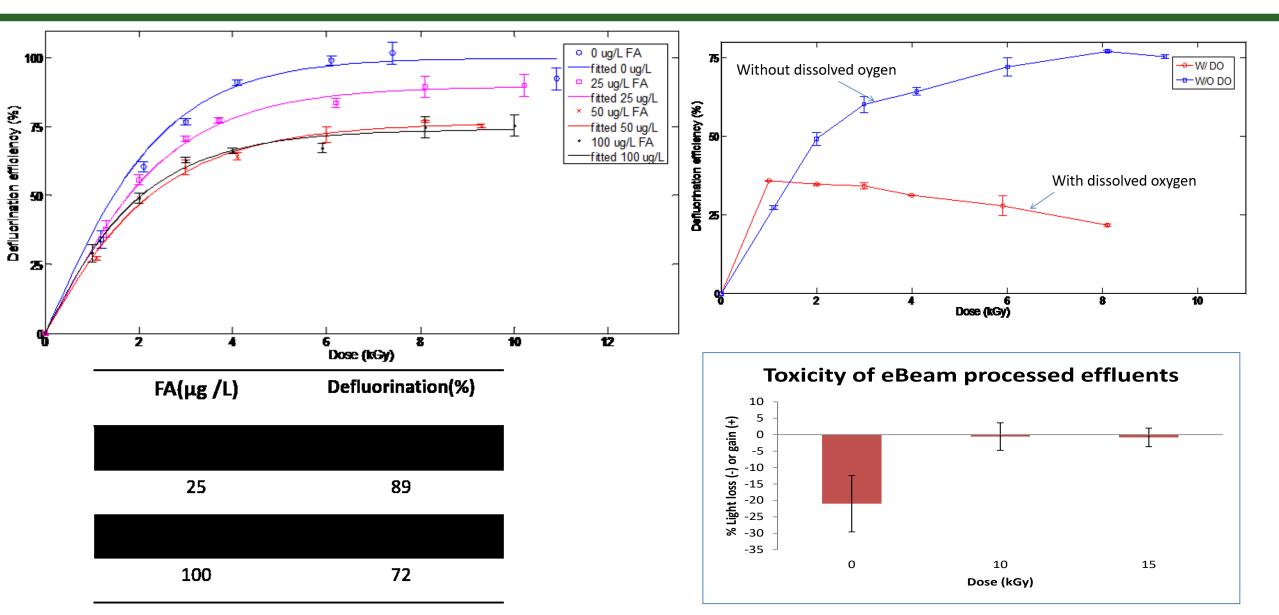

Source: TWDB, 2012

Figure 1-1: Role of water reuse by decade in 2012 State Water Plan Direct Potable Reuse


Consumer Consumer Advanced Water Treatment Treatment Free Yourse

Chemical Contaminants	Microbial Contaminants
Disinfection by products (bromoform, bromate, chloroform, trihalomethanes)	Cryptosporidium oocysts
Household products and food additives (Bisphenol A, Perflurooctanoic acid, Perfluorooctane sulfonate)	Giardia cysts
Estrogenic compounds (17β- estradiol)	Enteric viruses, Norovirus
	Total coliforms, <i>E.coli</i>
	Bacterial pathogens


eBeam for Potable Water Reuse – Microbial Contaminants


eBeam for Potable Water Reuse – Chemical Contaminants – (Bromate)

eBeam for Potable Water Reuse – Chemical Contaminants – (PFOA)

eBeam for Potable Water Reuse – Chemical Contaminants – (PFOA)

Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Electron beam treatment for potable water reuse: Removal of bromate and perfluorooctanoic acid

Li Wang^{a,*}, Bill Batchelor^a, Suresh D. Pillai^b, Venkata S.V. Botlaguduru^a

Table 4: *PFOA* defluorination efficiency of eBeam irradiation as a function of nitrate, alkalinity and fulvic acids¹

Parameters	Concentration	Defluorination efficiency (%)
Nitrate (mg/L)	0	34.6
	5	70.1
	10	77.0
	20	93.3
Alkalinity	0	53.8
(mg/L as	25	72.4
CaCO ₃)	50	77.0
	100	94.9
Fulvic acids	0	100
(µg- C/L)	25	90.0
	50	77.0
	100	75.4

Commercialization Strategy

- eBeam technology has to address a problem for which a solution
 does not exist or is currently too expensive
- eBeam technology has to be robust and ready for the "big time"
 - Need high energy , high power accelerators
 - Need robust and reliable accelerators
 - Needs to be off the shelf and ready for use in a working facility
 - Need redundancy
 - <u>Unfortunately no one wants equipment with Serial # 1 in their facility..</u>

Our Commercialization Strategy for the Environmental Industry

- Environmental Industry extremely conservative
- Ionizing irradiation is not in their "playbook"
- Partner with stakeholders who are willing to be pioneers
 - Technology providers
 - Financial industry
 - Consulting companies
 - Water utilities who have specific problems/issues that need solutions

Ex-Situ Remediation of Investigation-Derived Wastes containing PFAS by Electron Beam Technology

in collaboration with

Design & Consultancy for natural and built assets

Suresh D. Pillai

s-pillai@tamu.edu 979.458.3229 http://ebeam-tamu.org