Machine Learning Application on the Investigation of the Micro-Bunching Instability at Storage Rings

Tobias Boltz, Miriam Brosi, Erik Bründermann, Patrik Schönfeldt, Markus Schwarz, Minjie Yan and Anke-Susanne Müller | March 2, 2018

Laboratory for Applications of Synchrotron Radiation (LAS)

Micro-Bunching Instability

Motivation and Introduction

- operation of storage rings with short electron bunches increases coherent synchrotron radiation (CSR) power
- leads to micro-structure dynamics within the bunch
measurements
- indirect: resulting fluctuations in the emitted CSR power
- direct: electron distribution, challenging due to the small scale of the micro-structures
\Rightarrow KIT storage ring KARA (KArlsruhe Reasearch Accelerator) has a dedicated short-bunch mode
\Rightarrow synchronized sensor network (e.g. KAPTURE ${ }^{(1)}$ and KALYPSO ${ }^{(2)}$) enables studies of beam dynamics turn-by-turn
${ }^{(1)}$ Caselle, M. et al. JINST 12 C01040 (2017) $\quad{ }^{(2)}$ Rota, L., Caselle, M. et al. IBIC WEPG46 (2016)

Micro-Bunching Instability

Occurrence of Micro-Structures within the Electron Bunch

- electro-optical near-field setup at KARA enables the measurement of longitudinal bunch profiles
- small micro-structures within the electron bunch can be observed

Micro-Bunching Instability

Fluctuations of the emitted CSR Power

\Rightarrow micro-structure dynamics lead to fluctuating CSR emission

Micro-Bunching Instability

Beam Dynamics are changing with Bunch Current

\Rightarrow CSR power spectrogram reveals distinct frequencies

Simulation Code Inovesa

VFP Solver to study the Longitudinal Dynamics

- in-house developed at KIT, published as open source project: https://github.com/Inovesa/Inovesa

Machine Learning

Analysis of the Longitudinal Bunch Profiles using k-means
Motivation:

- identify the dominant micro-structures and their correlation to the fluctuating CSR emission
- around 1.5 million bunch profiles in the data set corresponding to a simulated CSR power spectrogram
\Rightarrow application of k-means to the bunch profiles within a specific bunch current

Investigation:

- Does the shape of these micro-structures follow a pattern or are they rather random fluctuations?
- Is it possible to characterize their nature by only a few different discrete states (clusters)?

Machine Learning

Unsupervised Learning: Clustering Method k-means

iter. \#1: update

initialization

iter. \#2: assignment

iter. \#1: assignment

iter. \#2: update

Analysis of Micro-Structure Dynamics

Different Bursting Regimes: Exemplary Bunch Currents

Regular Bursting Regime

Cluster Centers, $I_{\text {reg }}=0.88 \mathrm{~mA}, k=2$ (10000 profiles)

Regular Bursting Regime

Referenced Cluster Centers, $I_{\text {reg }}=0.88 \mathrm{~mA}, k=2$

Regular Bursting Regime

Correlation to CSR Power, $I_{\text {reg }}=0.88 \mathrm{~mA}, k=2$

Regular Bursting Regime

Correlation to CSR Power, $I_{\text {reg }}=0.88 \mathrm{~mA}, k=2$

Regular Bursting Regime

Longitudinal Phase Space Density, $I_{\text {reg }}=0.88 \mathrm{~mA}, k=2$

Sawtooth Bursting Regime

Cluster Centers, $I_{\text {saw }}=1.15 \mathrm{~mA}, k=4$

Sawtooth Bursting Regime

Referenced Cluster Centers, $I_{\text {saw }}=1.15 \mathrm{~mA}, k=4$

Sawtooth Bursting Regime

Correlation to CSR Power, $I_{\text {reg }}=1.15 \mathrm{~mA}, k=4$

Sawtooth Bursting Regime

Correlation to CSR Power, $I_{\text {reg }}=1.15 \mathrm{~mA}, k=4$

Sawtooth Bursting Regime

Longitudinal Phase Space Density, $I_{\text {saw }}=1.15 \mathrm{~mA}, k=4$

Micro-Structure Characteristics

Modulation Frequencies across different Bunch Currents

Micro-Structure Characteristics

Modulation Frequencies across different Bunch Currents

Micro-Structure Characteristics

Modulation Amplitudes across different Bunch Currents

Summary

What was gained by using Machine Learning?

- efficient tool for data exploration and knowledge extraction
- distinct micro-structures could be identified
- yields the possibility to correlate the results to the fluctuations of the CSR power
- new insights gained, e.g. number of structures is a constant across different bunch currents
\Rightarrow still useful for further studies of the micro-structure characteristics as it yields very condensed information about the dynamics

Outlook

Further Studies using the Application of k-means

\Rightarrow number of micro-structures changes with vacuum gap

Outlook

Further Studies using the Application of k-means

Thank you for your attention!

Backup

Backup

Simulation Parameters

Physical parameter	Value
RF voltage U_{0}	1 MV
revolution frequency $f_{\text {rev }}$	9 MHz
synchrotron frequency f_{s}	30 kHz
damping time τ_{d}	5 ms
harmonic number h	50
parallel plates distance g	3.2 cm
initial electron distribution $\varphi\left(z, E, t_{0}\right)$	2 -dim. Gaussian
simulation time t	$250 T_{\mathrm{s}}$
bunch current $l_{\text {bunch }}$	0.5 mA to 2.0 mA
Control parameter	Value
grid size $n_{\text {grid }}$	256
time steps $n_{\text {steps }}$	10000

Backup

Simulation and Measurement: Longitudinal Bunch Profiles

Backup

Simulation and Measurement: Longitudinal Bunch Profiles

Backup

Simulation and Measurement: CSR Power Spectrogram

\Rightarrow simulation and measurement show qualitative agreement

