

Machine Learning Application on the Investigation of the Micro-Bunching Instability at Storage Rings

Tobias Boltz, Miriam Brosi, Erik Bründermann, Patrik Schönfeldt, Markus Schwarz, Minjie Yan and Anke-Susanne Müller | March 2, 2018

Laboratory for Applications of Synchrotron Radiation (LAS)

Derivitiani sett avre autot therefore aver

KIT - The Research University in the Helmholtz Association

Micro-Bunching Instability

Motivation and Introduction

- operation of storage rings with short electron bunches increases coherent synchrotron radiation (CSR) power
- leads to micro-structure dynamics within the bunch

measurements

- indirect: resulting fluctuations in the emitted CSR power
- direct: electron distribution, challenging due to the small scale of the micro-structures
- ⇒ KIT storage ring KARA (KArlsruhe Reasearch Accelerator) has a dedicated short-bunch mode
- \Rightarrow synchronized sensor network (e.g. KAPTURE⁽¹⁾ and KALYPSO⁽²⁾) enables studies of beam dynamics turn-by-turn

⁽¹⁾ Caselle, M. *et al.* JINST **12 C01040** (2017) ⁽²⁾ Rota, L., Caselle, M. *et al.* IBIC WEPG46 (2016)

Occurrence of Micro-Structures within the Electron Bunch

Micro-Bunching Instability

- electro-optical near-field setup at KARA enables the measurement of longitudinal bunch profiles
- small micro-structures within the electron bunch can be observed

Micro-Bunching Instability

Fluctuations of the emitted CSR Power

 \Rightarrow micro-structure dynamics lead to fluctuating CSR emission

Micro-Bunching Instability

Beam Dynamics are changing with Bunch Current

Simulation Code Inovesa

VFP Solver to study the Longitudinal Dynamics

- in-house developed at KIT, published as open source project: https://github.com/Inovesa/Inovesa
- simulates longitudinal phase space density
- parallel plates model yields quite comparable results to measured data

Schönfeldt, P. *et al.* Parallelized Vlasov-Fokker-Planck solver for desktop personal computers. *Phys. Rev. Accel. Beams* **20** (2017)

⇒ Inovesa enables comprehensive studies of the micro-bunching instability on low-noise data

Machine Learning

Analysis of the Longitudinal Bunch Profiles using k-means

Motivation:

- identify the dominant micro-structures and their correlation to the fluctuating CSR emission
- around 1.5 million bunch profiles in the data set corresponding to a simulated CSR power spectrogram
- ⇒ application of *k*-means to the bunch profiles within a specific bunch current

Investigation:

- Does the shape of these micro-structures follow a pattern or are they rather random fluctuations?
- Is it possible to characterize their nature by only a few different discrete states (clusters)?

Machine Learning

Unsupervised Learning: Clustering Method k-means

Analysis of Micro-Structure Dynamics

Different Bursting Regimes: Exemplary Bunch Currents

Cluster Centers, $I_{reg} = 0.88 \text{ mA}$, k = 2 (10 000 profiles)

Referenced Cluster Centers, $I_{reg} = 0.88 \text{ mA}, k = 2$

Correlation to CSR Power, $I_{reg} = 0.88 \text{ mA}, k = 2$

Correlation to CSR Power, $I_{reg} = 0.88 \text{ mA}, k = 2$

Longitudinal Phase Space Density, $I_{reg} = 0.88 \text{ mA}, k = 2$

Cluster Centers, $I_{saw} = 1.15 \text{ mA}, k = 4$

Referenced Cluster Centers, $I_{saw} = 1.15 \text{ mA}, k = 4$

Correlation to CSR Power, $I_{reg} = 1.15 \text{ mA}, k = 4$

Correlation to CSR Power, $I_{reg} = 1.15 \text{ mA}, k = 4$

-10 -5

z/c (ps)

5

10

E (MeV)

Longitudinal Phase Space Density, $I_{saw} = 1.15 \text{ mA}, k = 4$

z/c (ps

5

10

E (MeV)

Micro-Structure Characteristics

Modulation Frequencies across different Bunch Currents

Micro-Structure Characteristics

Modulation Frequencies across different Bunch Currents

Micro-Structure Characteristics

Modulation Amplitudes across different Bunch Currents

Summary

What was gained by using Machine Learning?

- efficient tool for data exploration and knowledge extraction
- distinct micro-structures could be identified
- yields the possibility to correlate the results to the fluctuations of the CSR power
- new insights gained, e.g. number of structures is a constant across different bunch currents
- \Rightarrow still useful for further studies of the micro-structure characteristics as it yields very condensed information about the dynamics

 \Rightarrow number of micro-structures changes with vacuum gap

Outlook Further Studies using the Application of *k*-means

Thank you for your attention!

Simulation Parameters

Physical parameter	Value
RF voltage U ₀	1 MV
revolution frequency frev	9 MHz
synchrotron frequency fs	30 kHz
damping time $ au_{d}$	5 ms
harmonic number <i>h</i>	50
parallel plates distance g	3.2 cm
initial electron distribution $\varphi(z, E, t_0)$	2-dim. Gaussian
simulation time t	250 T _s
bunch current <i>I</i> _{bunch}	0.5 mA to 2.0 mA
Control parameter	Value
grid size n _{grid}	256
time steps n _{steps}	10 000

Simulation and Measurement: Longitudinal Bunch Profiles

Simulation and Measurement: Longitudinal Bunch Profiles

Simulation and Measurement: CSR Power Spectrogram

 \Rightarrow simulation and measurement show qualitative agreement