A Short Introduction to Bayesian Optimization

With applications to parameter tuning on accelerators

Johannes Kirschner 28th February 2018

ICFA Workshop on Machine Learning for Accelerator Control

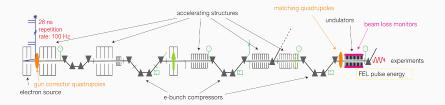
Solve

$$x^* = rgmax_{x \in \mathcal{X}} f(x)$$

Application: Tuning of Accelerators

Example:

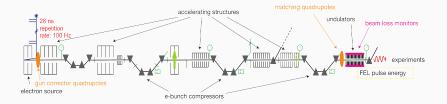
x = Parameter settings on accelerator f(x) = Pulse energy



Application: Tuning of Accelerators

Example:

x = Parameter settings on accelerator f(x) = Pulse energy



Goal: Find $x^* = \arg \max_{x \in \mathcal{X}} f(x)$

... using only noisy evaluations $y_t = f(x_t) + \epsilon_t$.

Part 1)

A flexible & statistically sound model for *f*: Gaussian Processes

Given: Measurements $(x_1, y_1), \ldots, (x_t, y_t)$. **Goal:** Find statistical estimator $\hat{f}(x)$ of f. **Regularized linear least squares:**

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \sum_{t=1}^{T} \left(x_t^{\top} \theta - y_t \right)^2 + \|\theta\|^2$$

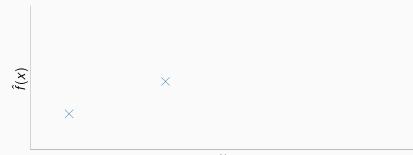
Least squares regression in a Hilbert space $\mathcal{H}:$

$$\hat{f} = \arg\min_{\boldsymbol{f} \in \mathcal{H}} \sum_{t=1}^{T} \left(\boldsymbol{f}(\boldsymbol{x}_t) - \boldsymbol{y}_t \right)^2 + \|\boldsymbol{f}\|_{\mathcal{H}}^2$$

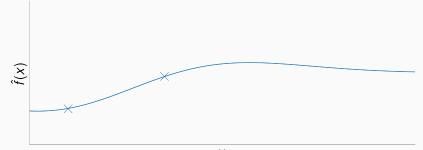
Least squares regression in a Hilbert space \mathcal{H} :

$$\hat{f} = \arg\min_{\boldsymbol{f} \in \mathcal{H}} \sum_{t=1}^{T} \left(\boldsymbol{f}(\boldsymbol{x}_t) - \boldsymbol{y}_t \right)^2 + \|\boldsymbol{f}\|_{\mathcal{H}}^2$$

Closed form solution if \mathcal{H} is a *Reproducing Kernel Hilbert Space*! Defined by a kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. Example: **RBF Kernel** $k(x, y) = \exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right)$ Kernel characterizes smoothness of functions in \mathcal{H} .



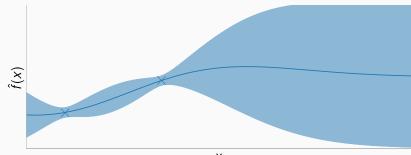
$$\hat{f} = \underset{f \in \mathcal{H}}{\arg\min} \sum_{t=1}^{T} \left(f(x_t) - y_t \right)^2 + \|f\|_{\mathcal{H}}^2$$



Х

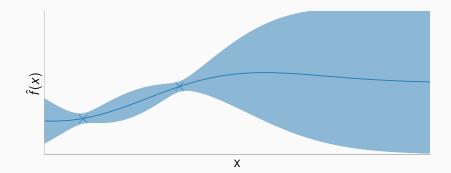
$$\hat{f} = \underset{f \in \mathcal{H}}{\arg\min} \sum_{t=1}^{T} \left(f(x_t) - y_t \right)^2 + \|f\|_{\mathcal{H}}^2$$

5



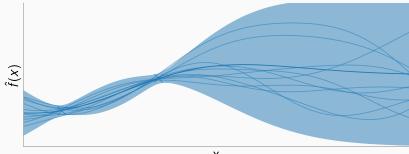
$$\hat{f} = \underset{f \in \mathcal{H}}{\arg\min} \sum_{t=1}^{T} \left(f(x_t) - y_t \right)^2 + \|f\|_{\mathcal{H}}^2$$

5



Bayesian Interpretation: \hat{f} is the posterior mean of a *Gaussian Process*.

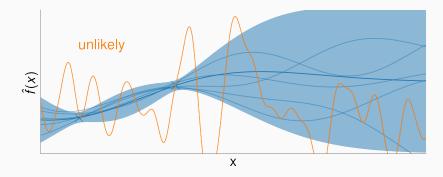
- any finite collection of evaluations is multivariate normal distributed,
- the covariance structure is defined through the kernel.



Х

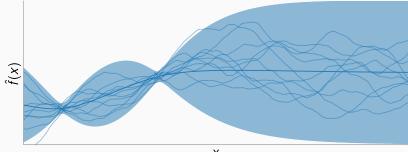
Bayesian Interpretation: \hat{f} is the posterior mean of a *Gaussian Process*.

- any finite collection of evaluations is multivariate normal distributed,
- the covariance structure is defined through the kernel.



Bayesian Interpretation: \hat{f} is the posterior mean of a *Gaussian Process*.

- any finite collection of evaluations is multivariate normal distributed,
- the covariance structure is defined through the kernel.



Х

Bayesian Interpretation: \hat{f} is the posterior mean of a *Gaussian Process*.

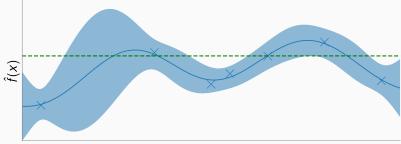
- any finite collection of evaluations is multivariate normal distributed,
- the covariance structure is defined through the kernel.

Part 2)

Bayesian Optimization Algorithms

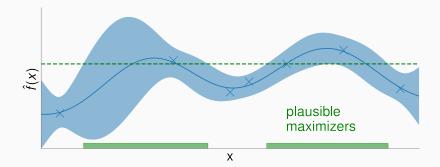
Idea: Use confidence intervals to efficiently optimize f.

Example: Plausible Maximizers



Idea: Use confidence intervals to efficiently optimize f.

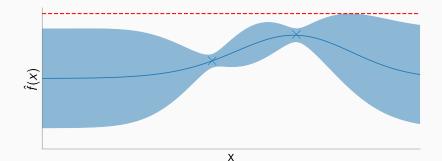
Example: Plausible Maximizers

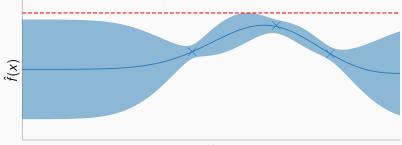


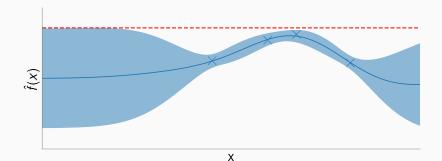


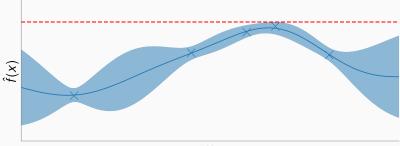
Idea: Use confidence intervals to efficiently optimize *f*.

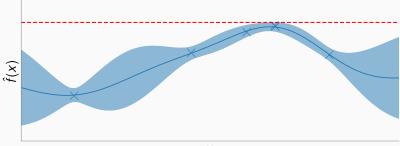
Example: GP-UCB (Gaussian Process - Upper Confidence Bound)

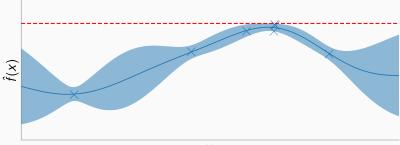


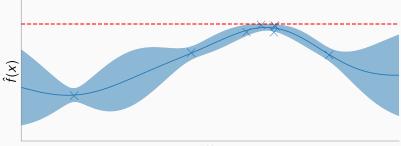


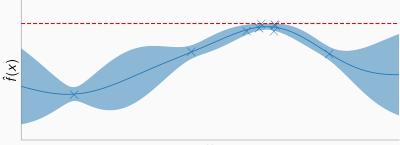








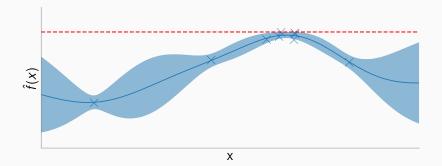




Bayesian Optimization: GP-UCB

Idea: Use confidence intervals to efficiently optimize *f*.

Example: GP-UCB (Gaussian Process - Upper Confidence Bound)

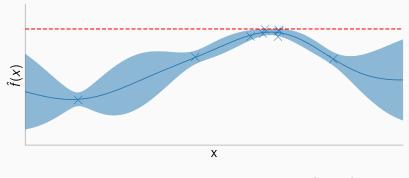


Convergence guarantee: $f(x_t) \longrightarrow f(x^*)$ as $t \longrightarrow \infty$

Bayesian Optimization: GP-UCB

Idea: Use confidence intervals to efficiently optimize *f*.

Example: GP-UCB (Gaussian Process - Upper Confidence Bound)



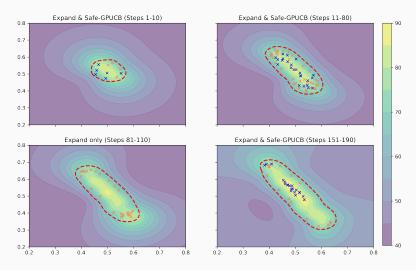
Convergence guarantee:
$$\frac{1}{T}\sum_{x=1}^{T}f(x^*) - f(x_t) \leq \mathcal{O}\left(1/\sqrt{T}\right)$$

Objective: Keep a safety function s(x) below a threshold c.

$$\max_{x \in \mathcal{X}} f(x) \quad \text{s.t.} \quad s(x) \le c$$

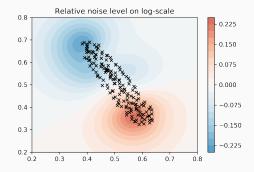
SafeOpt: [Sui et al., (2015); Berkenkamp et al. (2016)]

Safe Tuning of 2 Matching Quadrupoles at SwissFEL:



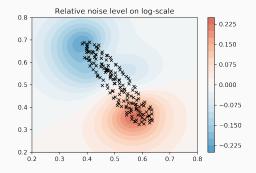
Extension 2: Heteroscedastic Noise

What if the noise variance depends on evaluation point?



Extension 2: Heteroscedastic Noise

What if the noise variance depends on evaluation point?



Standard approaches, like GP-UCB, are agnostic to noise level.

Information Directed Sampling: Bayesian optimization with heteroscedastic noise; including theoretical guarantees. [Kirschner and Krause (2018); Russo and Van Roy (2014)]

Experiments at SwissFEL

Joined work with *Franziska Frei*, *Nicole Hiller*, *Rasmus Ischebeck*, *Andreas Krause*, *Morjmir Mutny*

Plots

Thanks to Felix Berkenkamp for sharing his python notebooks.

Pictures

Accelerator Structure: Franziska Frei

F. Berkenkamp, A. P. Schoellig, A. Krause., *Safe Controller Optimization for Quadrotors with Gaussian Processes*, ICRA, 2016

J. Kirschner and A. Krause, *Information Directed Sampling and Bandits* with Heteroscedastic Noise, ArXiv preprint, 2018

D. Russo and B. Van Roy, *Learning to Optimize via Information-Directed Sampling*, NIPS 2014

Y. Sui, A. Gotovos, J. W. Burdick, and A. Krause, *Safe exploration for optimization with Gaussian processes*, ICML 2015