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Solve

x∗ = argmax
x∈X

f (x)

0



Application: Tuning of Accelerators

Example:

x = Parameter settings on accelerator

f (x) = Pulse energy

Goal: Find x∗ = arg maxx∈X f (x)

. . . using only noisy evaluations yt = f (xt) + εt .
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Part 1)

A flexible & statistically sound model for f :

Gaussian Processes

1



From Linear Least Squares to Gaussian Processes

Given: Measurements (x1, y1), . . . , (xt , yt).

Goal: Find statistical estimator f̂ (x) of f .

2



From Linear Least Squares to Gaussian Processes

Regularized linear least squares:

θ̂ = arg min
θ∈Rd

T∑
t=1

(
x>t θ − yt

)2
+ ‖θ‖2
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From Linear Least Squares to Gaussian Processes

Least squares regression in a Hilbert space H:

f̂ = arg min
f∈H

T∑
t=1

(
f (xt)− yt

)2
+ ‖f ‖2H
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From Linear Least Squares to Gaussian Processes

Least squares regression in a Hilbert space H:

f̂ = arg min
f∈H

T∑
t=1

(
f (xt)− yt

)2
+ ‖f ‖2H

Closed form solution if H is a Reproducing Kernel Hilbert Space!

Defined by a kernel k : X × X → R.

Example: RBF Kernel k(x , y) = exp
(
−‖x−y‖

2

2σ2

)
Kernel characterizes smoothness of functions in H.
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From Linear Least Squares to Gaussian Processes

Bayesian Interpretation: f̂ is the posterior mean of a Gaussian Process.

A Gaussian Process is a distribution over functions, such that

- any finite collection of evaluations is multivariate normal distributed,

- the covariance structure is defined through the kernel.
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Part 2)

Bayesian Optimization Algorithms
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Bayesian Optimization: Introduction

Idea: Use confidence intervals to efficiently optimize f .

Example: Plausible Maximizers
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Bayesian Optimization: GP-UCB

Idea: Use confidence intervals to efficiently optimize f .

Example: GP-UCB (Gaussian Process - Upper Confidence Bound)

Convergence guarantee: f (xt) −→ f (x∗) as t −→∞
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Bayesian Optimization: GP-UCB

Idea: Use confidence intervals to efficiently optimize f .

Example: GP-UCB (Gaussian Process - Upper Confidence Bound)

Convergence guarantee: 1
T

∑T
x=1 f (x∗)− f (xt) ≤ O

(
1/
√
T
)
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Extension 1: Safe Bayesian Optimization

Objective: Keep a safety function s(x) below a threshold c .

max
x∈X

f (x) s.t. s(x) ≤ c

SafeOpt: [Sui et al.,(2015); Berkenkamp et al. (2016)]
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Extension 1: Safe Bayesian Optimization

Safe Tuning of 2 Matching Quadrupoles at SwissFEL:

8



Extension 2: Heteroscedastic Noise

What if the noise variance depends on evaluation point?

Standard approaches, like GP-UCB, are agnostic to noise level.

Information Directed Sampling: Bayesian optimization with

heteroscedastic noise; including theoretical guarantees.

[Kirschner and Krause (2018); Russo and Van Roy (2014)]
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