Modelling Challenges PSI

Consider a 0.59 GeV, 2.3 mA 1.4 MW (CW) Proton Cyclotron facility

- uncontrolled & controlled beam loss
 \(O(2\mu A = \text{const}) \) in large and complex structures
Modelling Challenges PSI

Consider a 0.59 GeV, 2.3 mA 1.4 MW (CW) Proton Cyclotron facility

- uncontrolled & controlled beam loss $O(2\mu A = const)$ in large and complex structures

- PSI Ring: 99.98% transmission
 $\rightarrow O(10^{-4}) \rightarrow 4\sigma$
Motivations for ML

- **Predict and counteract interlocks**
 - aid/guide machine tuning
 - interlocks causes $O(2\%)$ beam time loss

- **Reduce controlled and uncontrolled beam loss**
 - less activation
 - better machine protection

- **Cheap to Evaluate Surrogate Models**
 - ab-initio models are impracticable for operation support
 - precise on-line models
 - check poster *Surrogate Models based on Supervised Learning and Polynomial Chaos for the Argonne Wakefield Accelerator*
Challenges

beam-time statistics for HIPA (courtesy of A. Parfenova)

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>10 yr av.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled user beam time</td>
<td>4838 hr</td>
<td></td>
</tr>
<tr>
<td>Current integral (Ah)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>meson production targets</td>
<td>7.97</td>
<td></td>
</tr>
<tr>
<td>SINQ</td>
<td>4.10</td>
<td></td>
</tr>
<tr>
<td>UCN</td>
<td>0.064</td>
<td></td>
</tr>
<tr>
<td>isotope production</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>Outages</td>
<td>228 hr</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td>93.1%</td>
<td>90 %</td>
</tr>
</tbody>
</table>
Challenges

- rare events
- large variability of the data
- high dimensionality of the data
Real Dataset from HIPA

more on data: see talk J. Snuverink on Friday

- ≈ 90 values (magnet currents, non-intercepting diagnostics, etc.)
- cleaning and filtering: 57 significant parameters
- data from last two weeks of the 2017 run
 - 10 Hz (11 900 000 samples)
 - in total about 450 interlocks (very unbalanced!)
Data is Key (ionisation monitors)

- raw data
- almost the same machine setup
Interlock prediction: Binary Classifier I

- supervised leaning
- Theano http://deeplearning.net/software/theano/

Logistic regression:

- x: input variables $\dim x = 57$
- y: 0,1 (0: no interlock, 1: interlock)
- Logistic function:

$$P(y = \text{interlock}|x, w, b) = \frac{1}{1 + e^{-(b-w*x)}}$$
Interlock prediction: Binary Classifier II

- Cost function c to be minimised (cross entropy loss + L_2-regularisation):

$$c = -\frac{1}{N} \sum (y \log(P(y)))$$
$$+ (1 - y) \log(1 - P(y))) + \lambda \sum w^2$$

- Optimisation method: stochastic gradient descent

- Hyper parameters: regularisation factor λ (0.01), learning rate $\alpha = 0.1 \ldots 0.01$
Training

- 4 days of training data
- training until model error is acceptable (empirical tuning of α)
- 4 days of validation data
Training Results (super prelim.)
Validation (super prelim.)

![Validation Data](image)

- **x-axis**: Probability classifier
- **y-axis**: Logarithmic scale
- Blue: no interlocks
- Orange: interlocks

The chart illustrates the distribution of probability classifier values for both scenarios, showing a comparison between cases with and without interlocks.
Selecting what you want ...

![ROC - validation data graph](image-url)
An Example from Fusion I

Most critical problem for Magnetic Fusion Energy (MFE)

avoid/mitigate large-scale major disruptions

- Current Status: 8 years of R&D results using Support Vector Machine ML
 - reported success rates in mid-80% range for JET 30 ms before disruptions, BUT > 95% with false alarm rate < 3% actually needed for ITER (P. DeVries, et al. (2015))
Deep Recurrent Neural Networks (RNNs)

- **Deep**
 - Hierarchical representation of complex data, building up salient features
 - Obviating the need for hand tuning, feature engineering, and feature selection

- **Recurrent**
 - Natural notion of time and memory: at every time-step, the output depends on $s(t-1)$ and $x(t)$
 - The internal state can act as memory and accumulate information of what has happened in the past
Summary and Outlook

- We used a very simplistic model for static prediction of interlocks (many thanks to Auralee for guidance)
- Reasonable results are encouraging

Most critical for high intensity accelerators
- Predict a rare event (interlock)
 \[T_p = \mathcal{O}(x \times 10), \text{ } x \text{ small [ms]} \]
- Develop a surrogate model for measured losses
Summary and Outlook

- Use the simplistic regression model to properly select/normalise data
- Learn / understand quality requirements of the data x
- Follow the ITER route by using Deep Recurrent Neural Networks (RNNs)
- Your input is very welcome ...