

Forecasting of Beam Interlocks in High Intensity (Hadron) Accelerators

Andreas Adelmann & Jochem Snuverink

March 1, 2018

Forecasting of Beam Interlocks in High Intensity (Hadron) Accelerators

March 1, 2018 Page 1 / 17

Modelling Challenges PSI

Consider a 0.59 GeV, 2.3 mA 1.4 MW (CW) Proton Cyclotron facility

• uncontrolled & controlled beam loss $O(2\mu A = const)$ in large and complex structures

Modelling Challenges PSI

Consider a 0.59 GeV, 2.3 mA 1.4 MW (CW) Proton Cyclotron facility

- uncontrolled & controlled beam loss $O(2\mu A = const)$ in large and complex structures
- PSI Ring: 99.98% transmission $\rightarrow \mathcal{O}(10^{-4}) \rightarrow 4\sigma$

Motivations for ML

- Predict and counteract interlocks
 - aid/guide machine tuning
 - $\bullet\,$ interlocks causes $\mathcal{O}(2\%)$ beam time loss
- Reduce controlled and uncontrolled beam loss
 - less activation
 - better machine protection
- Cheap to Evaluate Surrogate Models
 - ab-initio models are impracticable for operation support
 - precise on-line models
 - check poster Surrogate Models based on Supervised Learning and Polynomial Chaos for the Argonne Wakefield Accelerator

Challenges

Beam-time statistics for HIPA (Courtesy of A.Parfenova)		
	2017	10 yr av.
Scheduled user beam time	4838 hr	
Current integral (Ah)		
meson production targets	7.97	
SINQ	4.10	
UCN	0.064	
isotope production	0.013	
Outages	228 hr	
Availability	93.1%	90 %

Challenges

- rare events
- large variability of the data
- high dimensionality of the data

Forecasting of Beam Interlocks in High Intensity (Hadron) Accelerators

Real Dataset from HIPA

more on data: see talk J. Snuverink on Friday

- ≈ 90 values (magnet currents, non-intercepting diagnostics, etc.)
- cleaning and filtering: 57 significant parameters
- data from last two weeks of the 2017 run
 - 10 Hz (11 900 000 samples)
 - in total about 450 interlocks (very unbalanced!)

Data is Key (ionisation monitors)

• raw data

almost the same machine setup

Interlock prediction: Binary Classifier I

- supervised leaning
- Theano http://deeplearning.net/software/theano/
- Logistic regression:
 - x: input variables $\dim x = 57$
 - y: 0,1 (0: no interlock, 1: interlock)
 - Logistic function:

$$P(y = interlock | x, w, b) = \frac{1}{1 + e^{-b - w * x}}$$

Interlock prediction: Binary Classifier II

• Cost function c to be minimised (cross entropy loss + L₂-regularisation):

$$c = - \frac{1}{N} \sum (y \log(P(y)) + (1-y) \log(1-P(y))) + \lambda * \Sigma w^{2}$$

- Optimisation method: stochastic gradient descent
- Hyper parameters: regularisation factor λ (0.01), learning rate $\alpha = 0.1 \dots 0.01$

Training

- 4 days of training data
- training until model error is acceptable (empirical tuning of α)
- 4 days of validation data

Forecasting of Beam Interlocks in High Intensity (Hadron) Accelerators

Training Results (super prelim.)

Forecasting of Beam Interlocks in High Intensity (Hadron) Accelerators

March 1, 2018 Page 11 / 17

Validation (super prelim.)

Forecasting of Beam Interlocks in High Intensity (Hadron) Accelerators

March 1, 2018 Page 12 / 17

Selecting what you want ...

ROC - validation data

Forecasting of Beam Interlocks in High Intensity (Hadron) Accelerators

March 1, 2018 Page 13 / 17

An Example from Fusion I

Most critical problem for Magnetic Fusion Energy (MFE)

avoid/mitigate large-scale major disruptions

- Current Status: 8 years of R&D results using Support Vector Machine ML
 - reported success rates in mid-80% range for JET 30 ms before disruptions , BUT > 95% with false alarm rate < 3% actually needed for ITER (P. DeVries, et al. (2015)

Deep Recurrent Neural Networks (RNNs) I

• Deep

- Hierarchical representation of complex data, building up salient features
- Obviating the need for hand tuning, feature engineering, and feature selection
- Recurrent
 - Natural notion of time and memory: at every time-step, the output depends on $s(t-1) \mbox{ and } x(t)$
 - The internal state can act as memory and accumulate information of what has happened in the past

Summary and Outlook

- We used a very simplistic model for static prediction of interlocks (many thanks to Auralee for guidance)
- Reasonable results are encouraging

Most critical for high intensity accelerators

- Predict a rare event (interlock) $T_p = \mathcal{O}(x \times 10), x \text{ small [ms]}$
- Develop a surrogate model for measured losses

Summary and Outlook

- Use the simplistic regression model to properly select/normalise data
- Learn / understand quality requiements of the data x
- Follow the ITER route by using Deep Recurrent Neural Networks (RNNs)
- your input is very welcome ...