Ilya Agapov, SLAC ML workshop, 1 March 2018

with material from C. Fortmann-Grote, G. Geloni, S. Liu, S. Serkez, S. Tomin, I. Zagorodnov

Motivation: understanding the application area of ML

- ML methods NOT covered in this talk. Rather try to define the problem(s)
- Focus of ML is on prediction-type problems
- Prerequisite: large training datasets (such as handwriting)
- Simulation use-cases for accelerators
 - Case 1.Train a model to reproduce a complex computation quickly
 - Case2. Use on-line data to train a model
- Fundamental limitation: for uncharted territory (novel schemes) physics knowledge is essential. We should hope to deal with computational complexity only
- Long way from Toy models to practical application

Motivation: state of the art, conventional light source and FEL simulations

- In conventional accelerator facilities, very little unknown physics
- Following bottlenecks in the simulation are typical
 - Model (equations) well known, but the computation is expensive (linac collective effects, FEL, SR calculations)
 - Physics "well" known, but uncertainties in the model (complex systems)
 - Linac simulations (e.g. cavity models)
 - Precise optics modelling in a storage ring (< 1% BB accuracy)
- OCELOT on-line optimization project was started to address those issues (FEL simulations become too expensive to reproduce/optimize real machine with high precision)
- Another component: strengthening HPC platform at DESY (Maxwell cluster, 22472 cores but largely dedicated to on-line XFEL.EU experiments data processing, theory and PWA)
- Still another component: research into speeding up calculation methods
 - Parallelization, GPUs: fine, but only gets you so far, and code complexity an issue.
 Discontinued so far.
 - Empirical and simplified formulae (e.g. FEL estimator see later)
 - Al-inspired methods (limited progress focus of this workshop, hope to boost)

Overview of simulation needs: XFELs at DESY

FLASH

European XFEL

Linac simulations: CSR

- Why would we need simulations after the design phase: understand what's going on, prepare for new generation (XFEL.EU CW upgrade, LCLS-II) and add-ons (selfseeding)
- Collective effect are essential for linac simulations
- Most important are
 - CSR
 - Space Charge
 - Wake fields

CSR. Cross-checking OCELOT vs CSRtrack. XFEL, BC2, Q=100 pC

S.Tomin et al, OCELOT as a Framework for Beam Dynamics Simulations of X-Ray Sources, IPAC17, WEPAB031

Beam current was multiplied by x100 to enhance CSR effect

Beam trajectory, beam current, spatial distribution (X), energy distribution

Space charge effect + RF focusing cross-checking

Energy: 6.5 MeV – 154 MeV. <u>Starting point:</u> 3.2 m from cathode <u>Beam distribution:</u> 200 000 particles, Q = 250 pC

OCELOT: 2nd order matrices

RF focusing: Model of J.Rosenzweig and L. Serafini

ASTRA: Runge-Kutta tracking in external fields

Wakefield effects. Beam energy chirper.

Simulations from an attosecond pulse study

s [µm]

s [µm]

______px [μrad]

TDS simulation for European XFEL (OCELOT)

Image on a screen after TDS

Horizontal beam distribution at the position of the screen

FEL Simulations New genesis4 adapter (beta version)

Fast estimation of FEL performance (Ming Xie)

Estimated spectrogram

Electron beam

Design and status – hard x-ray self seeding

Long undulators (175m magnetic length at SASE2)

Specific choices for the European XFEL

Specific choices for the European XFEL

Heat-loading from the spontaneous signal → basically independent of the fundamental
 → Broad spectrum

Deposited energy calculated using different methodes	0-5keV	5-37keV	37-600keV	Total	Total energy
SPECTRA, [µJ]	2.8	1.8	~1.5	6.1	deposition:
OCELOT+NIST, [µJ]	1.67	3	<0.8	<5.47	~ 6 µJ
SPECTRA+GEANT4, [µJ]	3.2	2.3	0.5	6	

HXRSS Simulations

Now all the steps in the pipeline apart from the cathode can be done with OCELOT

HXRSS application for

Baseline SASE2 undulator (35 cells)

Combination of high rep-rate HXRSS and Tapering

Tapering: increases power

HXRSS: decreases bandwidth

Figure of merit for IXS: spectral flux Standard mode of operation at 250pC

	Intensity, [Ph/ pulse]	Photon pulse BW	Photon Flux, [Ph/s/meV]		
w/o HXRSS	7e11	$\Delta\lambda/\lambda$ ~1.2e-3 or ~12eV	1.5e12		
w/ HXRSS	7e12	$\Delta\lambda/\lambda$ ~1e-4 or ~940meV	2.1e14		
O. Chubar, G. Geloni et al. J. Synchrotron Rad. 23 (2016)					

Beam Halo Collimation Simulations (BDSIM)

- Energy distribution of the primary and secondary beam halo particles. Only those primary e-, which lost a small fraction of their energy (<1.5%), can reach the undulators.
- Phase space distributions at the end of the collimation section for the X (c) and Y (d) plane with 10⁷ input e⁻. Electrons outside the dynamic aperture of the undulator chamber will be stopped at the undulator entrance. The e⁻ between the R=2 mm and R=4 mm apertures are those which may hit the crystal (assuming that the crystal is 2 mm away from the beam center).

S. Liu et al., in Proc. IPAC'17, paper WEPAB020

 N_{hits} is estimated to be 27±6 out of the total number of electrons N_{total} =10⁶

→ N_{hits} / N_{total} ≈ 3×10⁻⁵ < N_{critical} / N_{total} ≈ 1×10⁻⁴

The crystal can be inserted up to a distance of ~2 mm to the beam core (~13 fs of minimum delay) !

SIMEX provides user interfaces and data formats for start-to-end photon experiment simulations

Calculators: Scriptable (python) interfaces to advanced simulation codes Data interfaces using metadata standards

SIMEX Calculators

* under development

Bottleneck 1: Wavefront propagation

- Numerical propagation of time-dependent XFEL pulses
- Sampling: ca. 100X100 nodes in x,y, 100-1000 time slices
- Code: SRW with shared-memory concurrency (openMP)
- Wall time on 72 Intel 2.2 GHz CPUs: ca. 30-60 minutes per pulse
- S2E simulations require ~100 pulses to sample pulse fluctuations

Figure 6. Intensity and phase maps of the SASE FEL X ray slices in a 9 fs pulse before and after propagating through the optics. The phase is color-coded. The distances between slices are about 0.2 fs.

Context All Scientific Reports 6 24791 (2016)

Bottleneck 2: Radiation damage simulation

- Combined Hartree-Fock + Molecular Dynamics + Monte Carlo scheme to solve electron and ion dynamics in intense x-ray fields
- Code: XMDYN + XATOM, GPGPU enabled
- 1 Trajectory per GPU
- Small biomolecule (5000 atoms) runs for ~4 hrs, need ~1000 Trajectories
- Scaling (MD part) : ~[N_{atom}]²
- → Large (realistic) molecules hardly feasible
- Alternatives: Continuum radiation damage models

Hau-Riege et al. PRE (2004) **69**, 051906

Jurek et al. J. Appl. Cryst. (2016)
 Son et al. Phys. Rev. A 83, 033402 (2011)

Radiation damage processes and timescales

- SPI paradigm: Use ultra-short, intense x-ray pulses to diffract from single particles
- \rightarrow Scatter enough photons despite small scattering cross-section and few scatterers
- \rightarrow Probe before destruction

Reutze et al. Nature (2000)

desy.cfel.de/cid/research/understanding_the_physics_of_intense_x_ray_interactions/

0		1	10 100	fs		
	Atom	т _{Auger} (fs)				
	С	10.7	 Ultrashort pulses (few fs) may outrur 			
	Ν	7.1	secondary ionization and			
	0	4.9	hydrodynamic expansion			
	S	1.3	Chart pulses contain less photon			
	Р	2.0	\rightarrow Short pulses contain less photon			

Storage rings

Third generation source example Petra III

Extension Hall East Ada Yonath 3 beam lines (~ 3 free slots, status 2017)

Max von Laue Hall 14 beam lines

Extension Hall North Paul P. Ewald 2 beam lines (3 free slots)

Storage rings – typical example

Most non-technical work consists of optics/orbit correction, and transfer optimization Typical example – orbit oscillations during top-up

Fit with BPMs around the injection does not really work Use empirical optimization instead

Similar situation with optics and orbit correction: starting from some precision we often don't know what's going on

But presently this is almost always ok with users

Lattice design for MBA upgrade. PETRA-IV

Typical MBA lattice layout, also used at PETRA IV

Figure of merit: DA

Multi Objective Genetics Algorithm (NSGA-II)

Siberia-2 example

Pareto frontier

Pareto efficiency, or **Pareto optimality**, is a state of allocation of resources in which it is impossible to make any one individual better off without making at least one individual worse off

Objects: DA and horizontal emittance Vars: 6 quadrupole families

E.Fomin, S.Tomin et al. Short Bunch Operation Mode Development at the Synchrotron Radiation Source Siberia-2, IPAC proceedings, 2016.

Can we use feature extraction to reduce calculation complexity? (speculation)

N features

(>17)

Fixing the bending, DA depends on

Type A features

Natural chromaticity Sextupole strength Phase advances between sextupoles Phase advance of the cells Phase advance of the octant Machine tune Machine natural chromaticity

Type B features

Map coefficients (possibly in a Lie representation, or as resonance driving terms) Up to 3rd or 4th order

0.05 Dx E 0.03 ă 0.01 20 β_x 15 β_{V} β_{x, y}, m 10 5 0 70 75 55 60 65

Individual magnets: 12 per cell + matching sections

In a good design the number of individual Magnet circuits would be similar to the number of "features" to control

We can't reduce the complexity

Misalignment studies (speculation)

But maybe we can speed things up

Problem: predict DA for each possible alignment scenario
 Simulation Procedure: optics model with errors -> open trajectory, orbit and optics correction -> statistical calculation of DA
 Very CPU consuming

• Possible approach:

Create large dataset of DA vs. statistical seed of individual magnet misalignments

Train NN to predict it

If NN generalizes well further calculations will be done instantaneously

Practical problem 1: We probably won't trust the NN result and will need to recompute in any case Practical problem 2: Modifications to optics will invalidate the training set Practical problem 3:Toy models are trivial (FODO), realistic model might turn out computationally infeasible

Possible advantage: HPC scalable and batchable

What are the other feasible ML applications

- By definition ML cannot go beyond what's in a training dataset.
- Feature selection in a (MOGA) optimization (simulation data mining)
- Speed up calculations in a long s2e chain chain (model training)
- Using NN as a universal fitting tool. Example: Storage ring brightness calculations.
 Analytical formulae for brightness are not universally accurate, need to resort to parameter scans with SRW/SPECTRA
- Speculation: if there is a standardized way to simulate everything with NN, possibility of creating complex models by connecting such components can emerge

Conclusion outlook

- Many sophisticated simulation tools are in place for (conventional) light source and FEL facilities
- Calculation speed and setup uncertainty is often an issue
- ML methods have potential in
 - Speeding up calculations in a long s2e chain
 - Combining measurements and simulations by replacing NN layers with measured data to build better models
- This is all still highly speculative for realistic applications
- A universal problem: generating useful datasets is not cheap

• Long way from toy models to practical problems. We need a "benchmark" that is hard enough to show feasibility (netflix challenge, DARPA grand challenge,...)

- Some simulation tasks covered here can be considered such benchmarks
- Real benefit will probably appear when AI/ML techniques are used widely in a standardized way (exchange neural networks instead of madx files)
- Lots of infrastructure work is to be done in parallel (DAQ, interface standardization, etc.)

