LHC Physics at High Luminosity and High Precision

Fermilab Users Meeting 2018 June 20, 2018 Stefan Prestel (Fermilab)

Image credits: easyrollerdice.com

Can we hope that new physics will show up at $13/14~{\rm TeV}$ if it was not seen already?

Will the next 20 years at LHC be dominated by indirect limit setting and calculating loops?

Should we look for new search strategies?

Motivational plots

from CMS-PAS-TOP-17-014, arXiv:1804.02610. 1701.05116. 1802.04146, 1806.00408, 1009.4122, 1609.08157

2000

m_x in GeV

W • 10²

The case for precision calculations

 Accurate+precise theory tools \rightarrow better control of backgrounds & signals.

Colliding composite objects kick-starts many processes:

hard scattering radiation cascade multiparton interactions hadronization and decay

Need precision in all of these!

Calculating short-distance scattering cross sections

Perturbation theory...a quest for integrals.

Calculating short-distance scattering cross sections

Perturbation theory...a quest for integrals. And we're still missing many beyond nex-to-leading order.

Short-distance records: Higgs production

Higher-order corrections to $gg \to H$ are very large – but brute-force "by-hand" calculations at

Next-to-next-to-next-to leading order (N^3LO)

show the stabilization of perturbation theory.

Going differential @ NNLO

Plot from arXiv:1603.02663

Problem: Regularize IR divergences in loops/reals ...in four dimensions ...event-by-event

"Slicing"

$$\sigma = [c + \ln(cut)] f(0) + \int_{cut} dz \frac{f(z)}{z}$$

"Subtraction"

$$\sigma = [c+ct]f(0) + \int dz \frac{f(z) - f(0)}{z}$$

Subtraction methods dominate @ NLO. Slicing popular @ NNLO.

Combining calculations

Plot from arXiv:1705.06700

NLO SM (QCD) everywhere now considered minimum requirement.

Automatic NLO calculations for arbitrary processes are available.

Most flexible predictions obtained by combining many calculations.

Problem here: Remove overlap!

⇒ "Matching & merging"

Inclusive jet multiplicity

Double Higgs production

Understand the Higgs sector \Leftrightarrow understand the Higgs potential. $\Rightarrow gg \rightarrow HH$ production very important at HL-LHC.

Second Higgs resolves the loop! Large m_t limit breaks down \Rightarrow Everything is one loop more difficult.

Very large phase space for further radiative corrections! \Rightarrow Large impact of / uncertainty from radiative parton shower cascade. _{9/15}

Parton showering

Redistributes high-E particles & moments over many low-energy quanta. Crucial part of physics modeling, required for jet structure and evolution. \rightarrow Improvements unlock data for precision measurements & bounds.

Plots from arXiv:1709.05543, 1710.00159, 1203.4606

From fixed-order to all-order calculations

Parton shower how-to:

- ◊ Take real emission matrix element
- ◊ Massage to factorize universal emission kernels.
- \diamond Successively draw new branchings from survival probability e^{-Real}

 \Rightarrow Produces all-order results for (massless) theories in soft/collinear limits.

So a precise shower should be easy, right? Just bring out the big...

Complete "NLO jet evolution" tools still missing, but important to leverage full LHC potential!

So a precise shower should be easy, right? Just bring out the big...kittens

Complete "NLO jet evolution" tools still missing, but important to leverage full LHC potential!

Parton showering: Sample results beyond lowest order

See arXiv:1611.00013, arXiv:1705.08093, arXiv:1711.02369, arXiv:1805.03757

Beyond order counting

LHC has *much more data* than analyzed for precision measurements – because some effects can't be calculated using a neat order-by-order counting.

 \Rightarrow Better calculations here can unlock whole new fields of study!

SUMMARY

The HL LHC will make the energy frontier into the precision frontier.

Measuring the Higgs & Yukawa sector will be crucial.

Precise fixed-order and all-order perturbative calculations will be necessary for both precision measurements and for indirect limits.

Much potential for unexpected results, we only need the calculations!

SUMMARY

The HL LHC will make the energy frontier into the precision frontier.

Measuring the Higgs & Yukawa sector will be crucial.

Precise fixed-order and all-order perturbative calculations will be necessary for both precision measurements and for indirect limits.

Much potential for unexpected results, we only need the calculations!

Thanks! Time to wake up!

