Status of the Inclusive Electron and Muon Neutrino Charged-Current **Cross-Section Measurement in the NOvA Near Detector**

Matthew Judah¹, Shih-Kai Lin¹, Leonidas Aliaga Soplin², Biswaranjan Behera^{2,3}, Pengfei Ding², Kanika Sachdev² ¹Colorado State University, ²Fermilab, ³IIT Hyderabad For the NOvA Collaboration

- Precision measurements of neutrino oscillation parameters require better knowledge of neutrino-nucleus interactions.
- The Near Detector (ND) is exposed to a large flux of 1-3 GeV neutrinos giving a better understanding of the ve and v_{μ} charged-current (CC) inclusive cross sections.

Selection Optimization

Each analysis' selection is optimized by minimizing the uncertainty on the total cross

रतीय प्रौद्योगिकी संस्थान हैवराबा

IIT Hyderabad

Indian Institute of Technology Hyderabad

 v_{μ} selection is 22% efficient and 90% pure v_e selection is 39% efficient and 49% pure

(Right) Uncertainty on expected number of ve appearance events due to each systematic : cross-section model uncertainties are a large source of systematic error

- Selection of neutrino events with charged leptons in the final state has been optimized on NOvA ND simulation based on G4NuMI, GENIE, and GEANT.
- Selected events are required to be fully contained and interact in the fiducial volume.

Muon Identification

Weigł

Template Fit For v_e **Signal Estimate**

 Inclusive v_e analysis uses a data driven technique to extract signal and background estimates.

• MC templates are fit to data while taking systematic uncertainties into account

Multi-Dimensional Approach to Efficiency Correction

• Measurement is done in 3D parameter space - lepton energy, lepton angle, and

A Boosted Decision Tree (MuonID) was trained on track properties with limited model dependence

- dE/dx log-likelihood
- Scattering log-likelihood
- Average dE/dx in last 10 cm of track
- Average dE/dx in last 40 cm of track

Machine Learning For Electron Identification

- Inclusive v_e analysis uses machine learning techniques to identify events with electron-like showers (CVNe).
- NOvA has also developed a single particle classifier to identify reconstructed clusters.
- Both methods achieve better identification than traditional reconstruction techniques used in NOvA.

neutrino energy to keep all information of the dependence on relevant variables.

• The reconstructed spectrum from data is unfolded and efficiency corrected in 3D.

Outlook

- v_e and v_μ CC inclusive cross-section analyses are close to completion:
 - Systematic uncertainties taken into account
 - Limited model dependence
- Analyses will produce systematics-limited double differential cross-section measurements • Statistics allow for the first double-differential ve CC inclusive cross-section measurement in this b energy range
- Expecting measurements with 10-15% systematic uncertainties.

correction using a shifted MC sample

Expected statistical uncertainty in lepton kinematic bins for each analysis

Fermi National Accelerator Laboratory

