ANNIE: Phase I Physics Results and Phase II Plans

Emrah Tiras, Iowa State University on behalf of the ANNIE Collaboration

Accelerator Neutrino Neutron Interaction Experiment

The goals of ANNIE:

- Measuring the abundance of final state neutrons (the neutron yield) from neutrino interactions in water.
- First major application of Large Area Picosecond Photo- Detectors (LAPPDs) in a neutrino experiment.
- First Gd-loaded water Cherenkov detector to run in a neutrino beam.

Phase I of ANNIE

- Steel cylindrical tank, 10 ft x 13 ft and 8 m under the ground.
- 26 tons of ultra-pure water (UPW).
- NCV, a movable acrylic vessel holding 25 gallons of Gd-loaded liquid scintillator.
- FACC paddles veto muons not originating in the tank.
- Sixty 8 inch PMTs at the bottom of the tank.
- MRD consists of 11 alternating layers to measure the energy and direction of stopped muons.
- The first two layers of the MRD are instrumented only during Phase I.

- The goal of Phase I was measuring and understanding beam-induced neutron backgrounds.
- There are two potential background neutron sources in ANNIE:
 - 1 Sky-shine neutrons from the beam dump
 - 2 Dirt neutrons from the rock
- We measured the background neutron flux at different locations in the tank.
- Also we measured the neutrons from a calibration source, ²⁵²Cf.

Results of Phase I

- We have detected neutron captures from both a calibration source and the beam.
- Preliminary estimates based on measurements below the surface indicate neutron backgrounds in less than 2% of spills
- Backgrounds are acceptable and can be mitigated with <2 ft of buffer.

Prompt signal

Phase II Plans

Gd-loaded (0.2%) water tank instrumented with a combination of conventional PMTs (~125) and LAPPDs (~5).

Fully refurbished MRD, 310 active channels for full muon reconstruction during Phase II.

Neutron Detection Efficiency

- The detector is large enough to fully contain neutrons
- Requested PMT coverage is sufficient to efficiently detect neutrons.

Enabling Technology

LAPPDs are 8" x 8" imaging photodetectors, with 103 E specifications of:

- ~60 picosecond single-PE time resolution
- < 1 cm spatial resolution
- > 20% QE (target)
- $> 10^6$ gain

ANNIE

low dark noise (<100 Hz/ch)

Vertex Reconstruction and Fiducialisation

- LAPPDs show substantial improvement in precision for vertex reconstruction.
 - LAPPDs help to understand the topology of the events.

