

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Scientific Computing For Users

Wesley Ketchum 51st FNAL Users' Meeting 20 June 2018

What is Scientific Computing?

• The computing we use to perform our science!

What is Scientific Computing *Division* ?

- Our goal: work with experiments to develop and support the computing solutions we need to get our physics results
 - Online and offline
 - Software and hardware
 - Current and future experiments
- We are a mix of scientific, computing, and engineering professionals
- We are part of the diverse user community and members of experiments at the energy, intensity, and cosmic frontiers

About me

- Associate Scientist in SCD
 - Real-time systems
 engineering department
- I'm a neutrino physicist
 - Focusing on SBN searches for non-standard oscillations
- I also work on DAQ systems
 - Focusing on development, commissioning, and operation of DAQs for LArTPCs

Data Acquisition

- Modern HEP experiments have a broad array of needs:
 - Interaction and readout rates
 - Online filtering/event-selection
 - Event data size
- Working with experiments to develop hardware and software for acquiring, collating, and storing, and monitoring data from detectors
 - *artdaq*: common DAQ framework, used in DarkSide, LArIAT, ProtoDUNE, SBN, Mu2e, and more!

ProtoDUNE

Off-the-shelf DAQ (otsdaq): provide simple interfaces to devices
 → supporting test-beam DAQ at FNAL!

5

Simulation

6

- Work with experiments to develop, support, and improve simulation software (e.g. Synergia, Pythia, GENIE, GEANT4)
- Example: How do we optimize beam design to maximize sensitivity to CP violation in DUNE?
 - Design change: 3 focusing horns, longer target
 - Increases neutrino flux in energies important for oscillations!
 - Equivalent to ~70% increase in mass for some physics goals

Reconstruction and calibration

- Develop and support common toolkits for experiments, like...
 - art event-processing framework
 - ConDB database for calibrations and detector/beam conditions
 - LArSoft package for LArTPC simulation, reconstruction, and analysis
- Work with experiments to develop, improve, and optimize algorithms
 - Example: improved Kalman-filter-based track fitting in LArSoft and data-driven resolution measurements

7

Adapting algorithms for new architectures

- Modern architectures provide more computing cores which allow more parallelization
- We are working with experiments to update and improve software to make better use of new architectures
 - e.g. multi-threaded art
- Example: *How will we improve particle tracking and pattern recognition in high-occupancy environments like HL-LHC?*
 - Current algorithms don't scale well to larger pileup
 - Working with CMS collaborators to
 develop new approaches → using GPUs

Machine Learning

- Convolutional neural networks becoming critical analysis techniques in HEP
- Working with experiments to develop tools, applications, and share knowledge
- Example: *How can we find more strong lenses in sky surveys?*
 - Currently rely on human supervision of algorithms
 - Collaborating with universities to build CNNs to detect and measure, lensed objects → dramatically increase our sample of lenses

Lensed galaxy

Lens type

	Galaxy	Quasar	SNe
Today (all)	1000	<50	2
DES	2,000	120	5
LSST	120,000	8,000	120

Nord+2016; Collett+2015; Gavazzi+2008; Oguri+Marshall, 2010

Computing Facilities

- We provide and maintain resources for experiments at Fermilab and the LHC
 - ~65 thousand total computing cores
 - ~50 PB of disk storage
 and ~150 PB of tape storage
- Work with users and experiments to support and maintain servers, networking, and other infrastructure

🚰 Fermilab

Using all that computing

- We develop and support common tools to enable <u>big</u> computing
 Tools like *jobsub*, *File Transfer Service*, *SAM*, *IFDH*, *CVMFS*
- Work with institutions across the world to access more computing in the Open Science Grid
 NOVA Preliminary
 - Last year ~100M opportunistic CPU hours!
- Example: *NOvA computing* for anti-neutrino appearance/disappearance results
 - ~14M CPU hours (2 million jobs!) over 11 months for simulation, reconstruction, and data selection
 - ~20M CPU hours in ~2 days for final analysis using NERSC via HEPCloud

HEPCloud

- We are working with the community to develop the tools to enable access to diverse set of computing resources
 - "Conventional", high-performance computing, commercial resources, etc. in a common interface and automated routing

Working with experiments to roll out production system this year!

20 June 18

Improving services to users

- Working to improve our computing services to our global user community
- Example: eduroam WiFi network
 - Providing access for users at Fermilab and across the world

Summary

- Scientific computing division works with and as part of the experiments to maximize our science reach
 - Support operation of experiments and computing facilities
 - Develop both common and custom hardware and software solutions to meet the needs of our experiments
- As computing architectures evolve and needs of experiments grow in scale, we work with experiments to evolve our tools to be ready for those challenges
- Talk to members of SCD in your experiment to find out more!

