Fermilab Test Beam Facility and LArIAT Experiment

Fermilab

U.S. DEPARTMENT OF ENERGY Office of

Science

OUISIANA STATE UNIVERSIT

Justin Hugon Louisiana State University On behalf of the Fermilab Test Beam Facility and LArIAT experiment

Fermilab Test Beam Facility (FTBF)

Fermilab Test Beam Facility (FTBF)

- Full details can be found: http://ftbf.fnal.gov/beam-overview/
 - 4 sec spill every 60 seconds
 - Tunable rate (100 Hz 100,000 Hz)
 - Beam available 24/7
- MTest Beamline
 - 120 GeV protons (primary)
 - 1 60 GeV secondary beam
 - Spot size about 2cm
- MCenter Beamline
 - Tertiary beamline down to 200 MeV
 - Currently have cryogenic support for LArIAT (Liquid Argon In A Test Beam)

Facility Instrumentation

Cherenkov Detector

4 MWPC Trackers

Pixel Telescope

Infrastructure in MTest

Signal, Network, & High Voltage Patch Panels

Motion Tables

Controlled

Web Cameras

Climate Controlled Huts & 30 Ton Crane

Beams Composition Studies—In Progress

Studies done by E. Skup and D. Jensen

- MTest Secondary Beam
- Plans to continue this study as schedule allows
- Put into a database with all running conditions recorded

Negative Beams Composition, Open Collimators 2016

Tests for LHC Experiments (CMS, ATLAS)

- CMS Outer Tracker, CMS Pixels, CMS timing all had test beams this year
- ATLAS pixels also ran for several weeks.
- Both groups used the test beam heavily this year.

ATLAS Test Beam Setup

CMS Test Beam Setup

Liquid Argon in a Test Beam (LArIAT)

170 L - 0.25 tons of LAr

Reuse the ArgoNeuT TPC in the MCenter (long-duration test) beamline

Liquid Argon in a Test Beam (LArIAT)

Changes from ArgoNeuT:

- New wireplanes
- Cold front-end electronics ASICs from MicroBooNE

LArIAT Goals

Physics Goals

- Hadron-Ar interaction cross sections
 - $\pi^{\mbox{\tiny +/-}}\mbox{-}\mbox{Ar}$ to support ν cross-sections
 - K^{+/-} Ar, supporting nucleon decay
 - Geant4 validation
- e/γ shower identification capabilities
- Anti-proton annihilation at rest
 - Similar to BSM n- \overline{n} oscillation signature
- Particle sign determination in the absence of a magnetic field, utilizing topology
 - e.g. decay vs capture

• R&D Goals

- Ionization and scintillation light studies
 - Charge deposited vs. light collected for stopping particles of known energy
- Optimization of particle ID techniques
- LArTPC event reconstruction
 - Compare 3mm, 4mm, 5mm wire pitch

LArIAT Tertiary Beamline

Instrumented beamline identifies and characterizes particles both online and offline

LArIAT Beamline: Wire Chambers

Wire chambers reconstruct the position and momentum of the particles in the beamline

LArIAT Preliminary

Justin Hugon, Louisiana State University

Wire chamber reconstructed momentum compared to simulation 12

LArIAT Beamline Detectors

TOF vs reconstructed momentum

Combining the momentum and TOF allows for $\pi/\mu/e$, K, proton separation

Additionally, using the known masses of the K and proton we can constrain the momentum scale to 3%

Calibrating the TPC

- Match beamline track to TPC track
- Fit dE/dx for various beamline momenta
- Calibrate detector response to follow Bethe-Bloch formula
- Calibrate using pions; check on kaons/protons

• The total π^- -Argon Cross-Section includes

 $\sigma_{\text{Total}} = \sigma_{\text{elastic}} + \sigma_{\text{inelastic}} + \sigma_{\text{ch-exch}} + \sigma_{\text{absorp.}} + \sigma_{\pi \text{-production}}$

Backgrounds are:

Pion Interaction Type per Kinetic Energy

Pion Interaction Fraction per Kinetic Energy

Note: Pion decay backgrounds are small component which remain in our result. Capture dominates the lowest energy bin and is thus excluded

Thin Slice Cross-Section

$$P_{\text{Survival}} = e^{-\sigma nz}$$

$$P_{\text{Interacting}} = 1 - P_{\text{Survival}} = 1 - e^{-\sigma nz}$$

$$\frac{N_{\text{interacting}}}{N_{\text{Incodent}}} = P_{\text{Interacting}} = 1 - e^{-\sigma nz} \approx 1 - (1 - \sigma nz + ...)$$

$$\boxed{\sigma \approx \frac{1}{nz} \frac{N_{\text{interacting}}}{N_{\text{Incident}}}}$$

Thin Slice TPC Method

Treat the TPC wire-to-wire spacing as a series of "thin-slice" targets

Update in Progress

Through Going Muon Contamination: 3% Wire Chamber Momentum Uncertainty: 3%

Toward Exclusive Pion Channels

Signal Events:

0 Secondary π^{\pm}

Working on absorption + charge exchange:

$\pi^{\scriptscriptstyle +} + Ar \ \rightarrow \ 0\pi^{\scriptscriptstyle \pm} + X$

- Useful for modeling contamination of ν CC QE from CC RES
- Need to identify outgoing pions v. protons

Background Events:

Contain Secondary $\pi^{\scriptscriptstyle\pm}$

Likelihood-Based Particle ID

- Likelihood of dE/dx versus residual range of each track hit
 - Constructed from simulated tracks
 - Evaluate using likelihood-ratio of all hits on a track

Kaon Cross-section & Anti-proton Anihilation at Rest

- Inclusive K+ cross-section has $\mathcal{O}(2000)$ Elastic/Inelastic interactions identified
 - Inclusive cross-section coming soon
 - First time measured on argon
- DUNE plans search for proton decay: $p \rightarrow K^+ \overline{\nu}$
- Cross-section information will help ensure signal efficiency is modeled properly Hugon, Louisiana State University

- LArIAT has identified O(20) antiproton annihilation at rest candidates
 - $\mathcal{O}(70)$ annihilation in flight
- Similar to BSM n-n oscillation signature
 - DUNE planning search
- Working to reconstruct these final state topologies 24

PixLAr & Detector R&D

$\textbf{LArIAT} \rightarrow \textbf{Wires}$

- LArIAT ran with few different wire spacings and light detector configurations
 - Run-I / Run-II: 4mm wire pitch
 - Hadronic cross-sections
 - Scintillation Light R&D
 - Run-III: 3mm / 5mm wire pitch comparison
 - LArTPC particle ID R&D
 - New mesh cathode (for SBND)
 - New ARAPUCA Light Detection System

Justin Hugon, Louisiana State University

$PixLAr \rightarrow Pixels$

PixLAr Readout Plane

PixLAr Data

- PixLAr event displays demonstrate pixel readout
- PixLAr ganged-pixel readout worked even with high particle multiplicity

Conclusions

- FTBF busy with:
 - LHC upgrades
 - sPHENIC/EIC upgrades
 - Veriety of neutrino programs
 - Generic detector R&D
- FTBF has many instruments available to users
- LArIAT working on many physics results
 - Inclusive cross-sections for π K+ and exclusive cross-sections
- LArIAT & PixLAr working on detector results
 - 3mm/4mm/5mm wires and pixel reconstruction
 - Scintillation light collection with PMTs, SiPMs, ARAPUCA, ArCLight detectors

Thank you!

Backup Slides

Liquid Argon Time Projection Chamber

Energy Corrections

 Adding up all the energy which a pion loses in the region before it enters the TPC (TOF, Halo, Cryostat, Argon) gives us the "energy loss" by the pion in the upstream region

LArIAT Beamline: Time of Flight

2 scintillator counters w/ ~1ns sampling, provide the time of flight (TOF)

LArIAT Beamline Detectors

			n=1.11 Aerogel	n=1.057 Aerogel	
		200-300 MeV/c	z_{w}^{μ}	μπ	
		300-400 MeV/c	$\{\mu_{x},\pi_{y}\}$	ξμε π	
		✓ Allows to	perform π/μ	u separation	
Mary Mary	over a range of momentum ✓ Currently under investigation				
1 CL 2 Magnet W C 3	A C 4	T O F LAr	TPC Muc	on Range Stack	
 Four layers of XY planes sandwiched between (pink) steel slabs 					
 Each plane is composed by 4 scintillating bars connected to a PMT 	π μ —		>		
 Allows to discriminate π/μ exiting the cryostat Currently under investigation 					
Justin Hugon, Louisiana State University				33	

Matching Beamline to the TPC

reconstructed in the beamline and extrapolate it to the LArTPC and look for a match We match in both position (+/- 5cm about the mean)

• We can take this track

Inside the cryostat: TPC and light collection system

Light Collection System

 Wavelength shifting (evaporated) reflected foils on the four field cage walls

✓ Technique borrowed from dark matter experiments

- Provides greater (~ 40 pe/MeV at zero field) and more uniform light yield respect to "conversion-on-PMTs-only" light systems
- R&D for future neutrino experiments as a way to improve calorimetry and triggering Justin Hugon, Louisiana State University

New ARAPUCA Light Collection System

L. M. Santos

- Dichoric filter + wavelength shifter
 - Trap light inside device
- Inner walls made of Teflon
 - Trapped light reflected until detected by SiPM

New ARAPUCA Light Collection System

- ARAPUCA mounted near existing PMTs
 - Compare ARAPUCA performance to PMTs

2x Ganged SiPM

Cross-Section

• We begin by looking at the bin content of the cross-section from MC

- Here we show events / 50 MeV bin to mimic the binning used in the data
- Plot the true kinetic energy

• Pion captrure-at-rest dominate in the lowest energy bin (0 MeV < KE < 50 MeV)

- Constitutes ~80% of the interactions in that bin

Interaction Type Per True Energy Bin

- This is not a process we want to include in the cross-section measurement

Percentage of Interaction Type Per True Energy Bin

What happens in the upstream

- About 1% of the time the pion actually stops before reaching the TPC
 - The remaining portion there is actually an interaction

Percentage of Interaction Type Before TPC

Interaction Type Before TPC

Pion Event Selection

 Our MC allows us to estimate what our fractional beam composition and our selection efficiencies are for the various particle species

	π^{-}	e^-	γ	μ^{-}	K^-	\overline{p}
Beam Composition (%)	48.4	40.9	8.5	2.2	0.035	0.007

Table 1: Beam Composition - Negative polarity configuration (from MC)

	π^- MC	e^- MC	$\gamma \ MC$	$\mu^- \mathrm{MC}$	K^- MC
Percent of events passing cut	73.5%	14.2~%	2.3%	73.4%	70.6%

Table 8: Fraction of MC Events passing inclusive pion analysis cuts.

Validation Plots

Non-LHC Collider Tests

- sPHENIX (Brookhaven)
 - Continuing tests of EMCal and Hadronic calorimeter including new readout electronics
 - Used the results for their CD review.
 - Will be returning next year
 - Continues to send other users our way as well.

- Now we have a matched WC track and TPC track
- We calculate the π-candidate's initial kinetic energy as

$$KE_{i} = \sqrt{p^{2} + m_{\pi}^{2}} - m_{\pi} - E_{Flat}$$

we take into account energy loss due to material upstream of the TPC (argon, steel, beamline detectors, etc)

• We then follow π -candidate track treating each point as a "thin slice" of argon which the pion is incident to at a known energy

Kinetic Energy (MeV)