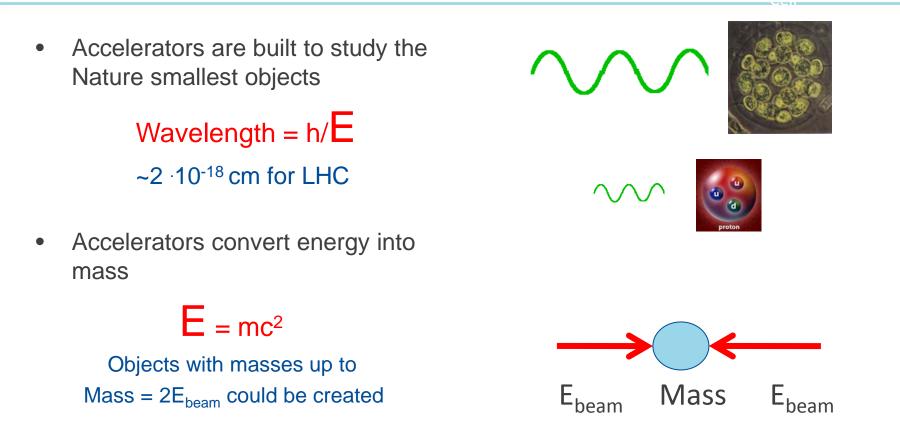

Future Colliders and European Strategy Update

From a 1954 Slide by Enrico Fermi, University of Chicago Special Collections.

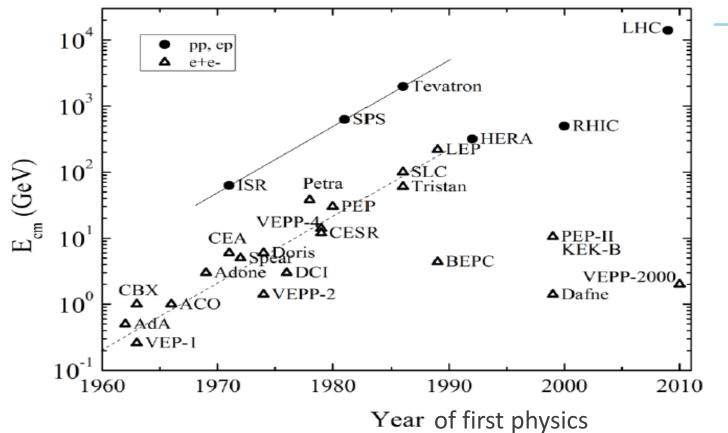
Dmitri Denisov, Fermilab Fermilab Users Meeting, June 21 2018


1

Outline

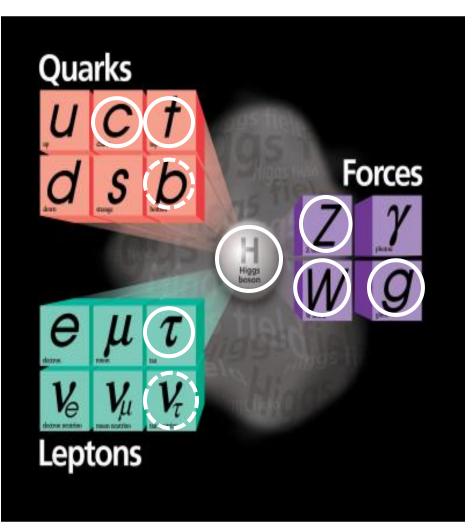
- Why high energy colliders?
- Overview of past and present colliders
- Future colliders challenges
- Medium term future colliders options
 ILC, CepC, CLIC, FCC
- European Strategy update
- Summary

Why High Energy and Why Colliders



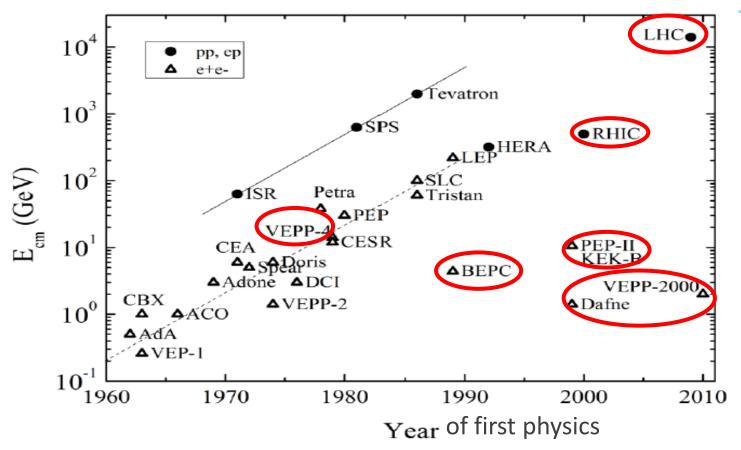
Collider center of mass energy is $2E_{beam}$ instead of $\sqrt{2mE_{beam}}$ for fixed target

To get to the next step in understanding of Nature - at both smaller distances and higher masses - high energy colliders is the only way to proceed


🗲 Fermilab

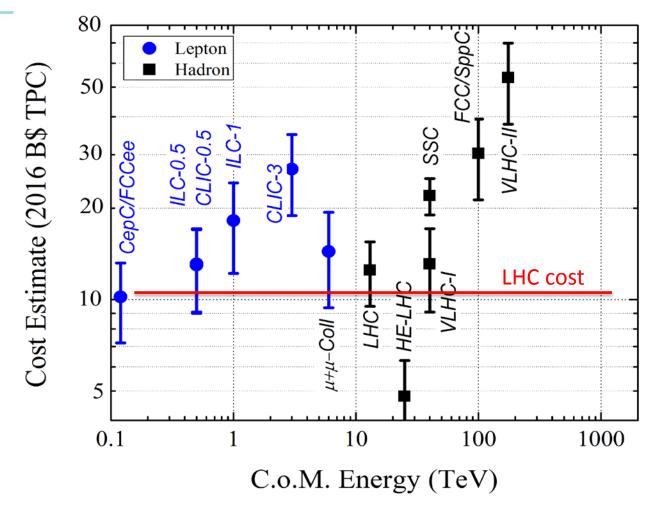
Colliders

- First e⁺e⁻ colliders started operation in early 1960's with hadron colliders (storage ring) first collisions in 1971 with the completion of the ISR
- Large number of e⁺e⁻ colliders, while few hadron colliders
- Hadron colliders provide higher center of mass energy, while colliding "composite" particles


Colliders and the Standard Model

- Progress in particle physics over past 50 years was closely related to discoveries at ever more powerful colliders
 - e⁺e⁻ colliders
 - c quark, tau lepton, gluon
 - Use of antiprotons in the same ring as protons
 - W and Z bosons
 - Superconducting magnets
 - Top quark and the Higgs boson
- All expected standard model elementary particles have been discovered by now
 - b-quark and tau neutrino in fixed target experiments at Fermilab

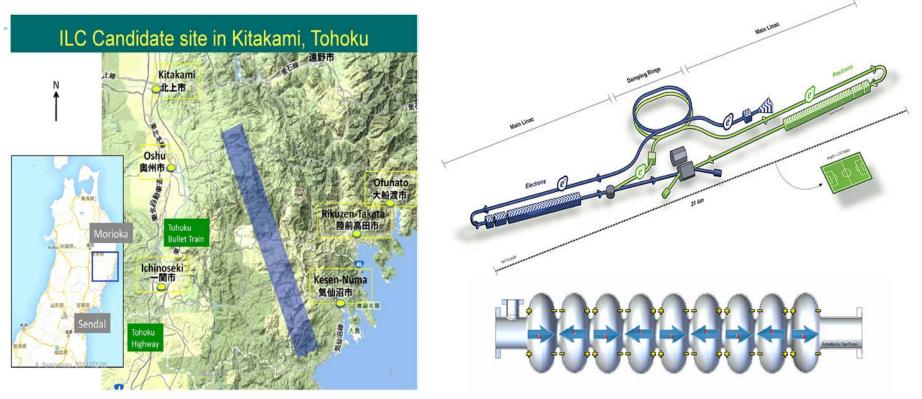
Operating Colliders


- Single high energy hadron collider the LHC, now at 13 TeV
 - RHIC at BNL nuclear studies
- DAFNE (Frascati), VEPP (Novosibirsk), BEPC (Beijing) low energy e⁺e⁻ colliders
- SuperKEK-B b-factory at KEK re-starting physics in 2018 with ~40 times higher luminosity
 - Studies of particle containing b-quarks

Physics Goals and Challenges of the Future Colliders

- Physics drives accelerators developments
 - Like colliding antiprotons and protons in the already existing ring of SPS at CERN to discover W and Z bosons
- Today there are two areas where new colliders are especially important
 - "Higgs factory" a collider (most probably e⁺e⁻) with a center of mass energy 250 GeV and above and high luminosity to study the Higgs boson properties
 - "~100 TeV" pp collider to get to the "next energy frontier" an order of magnitude or so above LHC
 - Study distances up to $\sim 10^{-19}$ cm and particles masses up to ~ 50 TeV
- What are the challenges in building next generation of colliders
 - Progress in new acceleration methods aimed to reduce the cost of the colliders was relatively slow over past ~20 years

Cost Estimates of LHC and Future Colliders


- Shiltsev's parametrized cost model: https://arxiv.org/abs/1511.01934
- Substantial costs based on existing or soon to be reachable technologies

Medium Term Colliders Projects Under Development

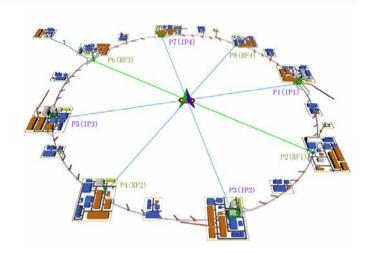
- ILC International Linear Collider
 - 250 GeV linear e⁺e⁻ collider (recent option has "staging" with second stage at 500 GeV)
 - Higgs factory (and top quark factory after upgrade)
 - Location Japan. Start of construction ~2024? Estimated cost ~\$5B
- CepC Circular Electron Positron Collider
 - ~250 GeV circular e⁺e⁻ collider (the tunnel could be later used for pp collider)
 - Higgs factory
 - Location China. Start of construction ~2022. Estimated cost ~\$5B
- FCC Future Circular Colliders
 - 350 GeV e⁺e⁻ and/or ~100 TeV pp (and HE-LHC)
 - Higgs factory and/or next energy frontier
 - Location CERN. Start of construction after 2026. Estimated cost ?
- CLIC Compact Linear Collider
 - 380 GeV linear e⁺e⁻ collider (with potential upgrade up to 2 TeV)
 - Higgs factory and top factory
 - Location CERN. Start of construction after 2026. Estimated cost §6B

International Linear Collider

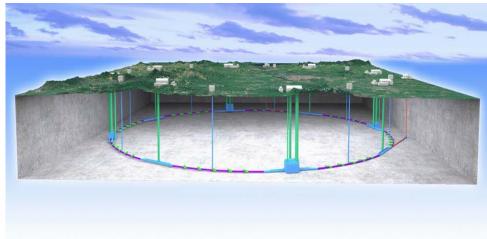
- ILC is e⁺e⁻ linear collider to be constracted in Japan
 - Center of mass energy 250 GeV (upgradeable to higher energies) and ~20 km long
 - Luminosity >10³⁴ cm⁻²s⁻¹
- Based on superconducting RF technology (SCRF) with ~30 MV/m acceleration (Fermilab's expertise) to accelerate electrons and positrons to ~ 125 GeV/beam
 - Excellent Higgs factory with many Higgs production and decay channels accessible

ILC Status and Plans

- Starting in 2008 Global Design Effort (GDE) progressed developing
 - Technical design of the ILC
 - Cost estimate and international cooperation plan
- GDE concluded in 2012
 - Including TDRs for the accelerator and detectors
 - Physics case strengthened with the Higgs discovery
- In 2012 Japan expressed strong interest to host the ILC

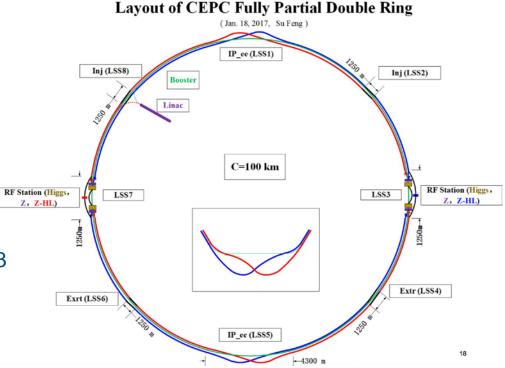


- Recently
 - Substantial progress in technical developments
 - Reduction of initial energy to 250 GeV from 500 GeV to reduce the cost to \$5B
- Decision by Japan's government is expected by the end of 2018
 - Chances of positive decision are pretty good
 - Fermilab can participate strongly as the leader in SCRF technology



Proposals for Colliders in China: CepC and SppC

- CepC Circular Electron Positron Collider
 - ~100 km long ring
 - 90-250 GeV in the center of mass
 - Z and W bosons and Higgs factory
- SppC Super Proton Proton Collider
 - In the same ring as CepC
 - ~100 TeV with 16 T magnets



Future Colliders in China

- Active progress with the CepC and SppC design recently
- Plan is to get funding for detailed technical design report
 - Completed by early 2020s

- Completed in 2027
- Data collection 2028-2035
- SppC timeline
 - Design 2020-2030
 - Construction 2035-2042
 - Physics at ~100 TeV starting in 2043
- The proposal is based on
 - Experience with BEPC e⁺e⁻ collider
 - Relatively inexpensive tunneling in China
 - Strong government interest in scientific leadership both CepC and SppC are "national projects with international participation"
 Fermilab

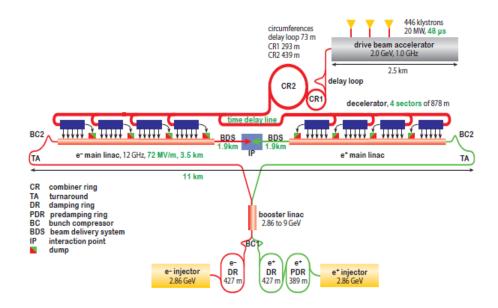
FCC – Future Circular Colliders (CERN)

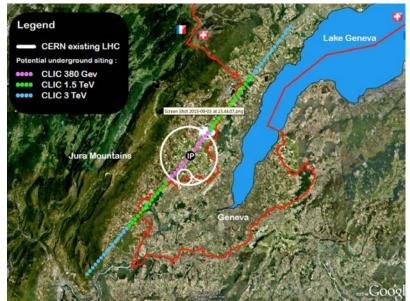
- FCC activity follows 2013 European particle physics strategy recommendation to develop future energy frontier colliders at CERN
- There are three options in ~100 km long tunnel
 - pp collider with energy of ~100 TeV
 - e⁺e⁻ collider with energy of ~350 GeV
 - ep collider
- High energy HE-LHC (x2 in energy, using higher filed magnets in the LHC tunnel) is also part of the FCC program

FCC e⁺e⁻ Collider

	Parameter	FCC-ee			LEP2
LEGENO HE David	Energy/beam [GeV]	45	120	175	105
	Bunches/beam	13000- 60000	500- 1400	51- 98	4
	Beam current [mA]	1450	30	6.6	3
	Luminosity/IP x 10 ³⁴ cm ⁻² s ⁻	21 - 280	5 - 11	1.5 - 2.6	0.0012
	Energy loss/turn [GeV]	0.03	1.67	7.55	3.34
	Synchrotron Power [MW]	100		22	
PE_LIFECEDar lagean patients of dult foculties	RF Voltage [GV]	0.3-2.5	3.6- 5.5	11	3.5

- Circular e⁺e⁻ collider has substantially higher luminosity at lower energies vs linear collider
 - Z, W, Higgs and top quark factory
- Main challenges: 100 km long tunnel and high synchrotron losses require demanding superconducting accelerating system and high electricity consumption


FCC pp 100 TeV collider

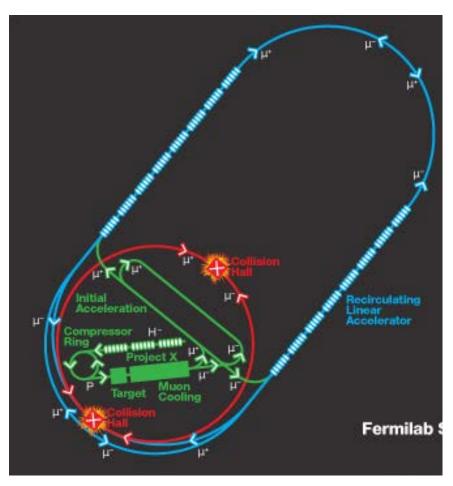

Parameter	FCC-pp	LHC
Energy [TeV]	100 c.m.	14 c.m.
Dipole field [T]	16	8.33
# IP	2 main, +2	4
Luminosity/IP _{main} [cm ⁻² s ⁻¹]	5 - 25 x 10 ³⁴	5 x 10 ³⁴
Stored energy/beam [GJ]	8.4	0.39
Synchrotron rad. [W/m/aperture]	28.4	0.17
Bunch spacing [ns]	25 (5)	25

- 100 TeV pp collider with 16 T magnets in 100km long tunnel will become next energy frontier increasing collider energy by an order of magnitude in comparison with the LHC
- Main challenges: long tunnel, high field magnets, high synchrotron radiation load
 - Fermilab has leading expertise in high field magnets

CLIC Collider at CERN

- CLIC is a linear e⁺e⁻ collider based on "warm" RF technology with 70+ MV/m acceleration
 - The only way to get to multi-TeV e⁺e⁻
- 11km long for 380 GeV in the center of mass
- Under active design development

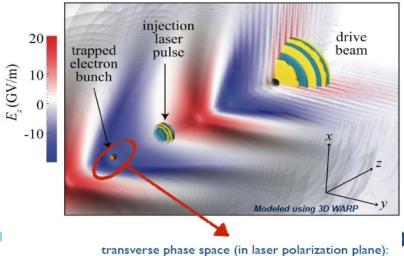
Parameter	Unit	380 GeV	3 TeV
Centre-of-mass energy	TeV	0.38	3
Total luminosity	10 ³⁴ cm ⁻² s ⁻¹	1.5	5.9
Luminosity above 99% of vs	10 ³⁴ cm ⁻² s ⁻¹	0.9	2.0
Repetition frequency	Hz	50	50
Number of bunches per train		352	312
Bunch separation	ns	0.5	0.5
Acceleration gradient	MV/m	72	100
Site length	km	11	50


SE Fermilab

μ⁺μ⁻ Colliders

 Muon collider would be an excellent Higgs factory

2x2 TeV


- Low synchrotron radiation
- Higgs production in t-channel
- 125 GeV collider is only ~100 meters in size
- But... muons are unstable with life-time of 2.2 μs
 - Cooling muons fast is a major challenge
 - High luminosity needed to get reasonable number of Higgs events
- Design work is restarting in Europe based on new ideas of muons production

Novel Ideas in Very High Gradient Acceleration

- To reduce size/cost develop accelerating gradients in the GV/m range
 - Beam-Driven Wakefield Accelerators
 - In US: FACET/FACET-II
 - Laser-driven Wakefield Accelerators
 - In US: BELLA
 - Dielectric Wakefield Acceleration
 - In US: AWA, ATF
- Major research efforts are also underway in Europe and Asia
 - Some are: AWAKE (CERN), Eupraxia, FLASH Forward (DESY), SPARC Lab (INFN)
- For now these methods are at the initial stages of development
 - At least 10-20 years to practical applications in particle physics, might be longer

19 Dmitri Denisov Users Meeting Future Colliders

normalized emittance = 20 nm

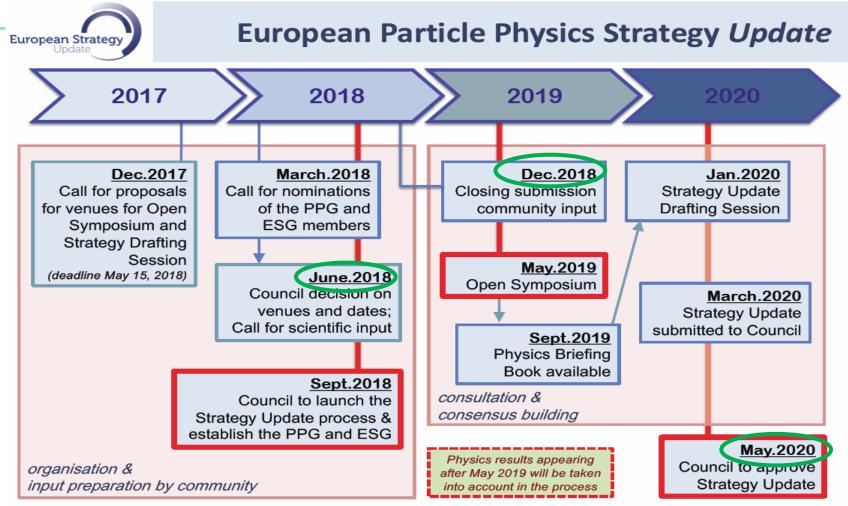
How Particle Physicists Will Make the Decisions?

- Driven by planning in various regions
 - Japan plans to decide about hosting ILC by the end of 2018
 - European/CERN future will be developed over next two years coming slides
 - China is expected to decide by their next five years plan or around 2021
 - US will discuss its plans at Snowmass/P5 process starting in 2021

European Particle Physics Strategy (EPPS)

• First EPPS in 2006, latest update in 2013

- Currently on track to implement 2013 recommendations


- Update to EPPS why now
 - Europe/CERN has to develop plans beyond HL-LHC
 - CERN expects to have funds available for new project(s) construction in 2026
 - LHC luminosity doubling time is now years, so running into late 2030's is not productive
- EPPS is led by the Strategy Secretariat
 - Halina Abramowicz is the Strategy Secretary
- EPPS includes Physics Preparatory Group ~17 people and European Strategy Group ~ 64 people
 - It will have representatives from all regions, including US

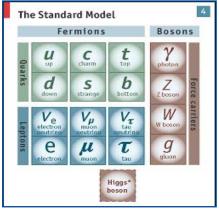
🛟 Fermilab

Dmitri Denisov Users Meeting Future Colliders

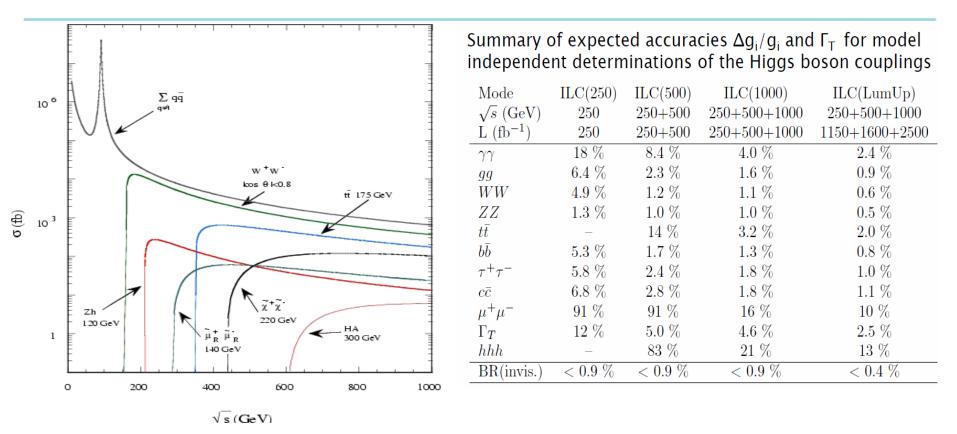
European Strategy

Timeline of the European Strategy Update

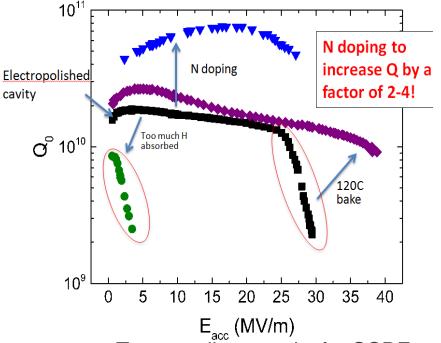
- December 18, 2018 deadline for "white papers" proposals
- The Open Symposium will take place in Granada, Spain, 13-16 May 2019
- Strategy Drafting Session in Bad Honnef, Germany, 20-24 January 2020

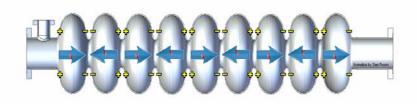

Comments on US Participation in EPPS Update

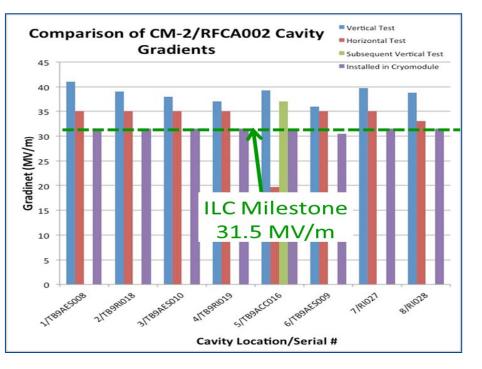
- It is *European* planning with the goal to develop future for *CERN*
- Preferred way is for the communities involved in specific initiatives to come together with joint white papers, examples
 - HE-LHC is expected to be coordinated by ATLAS/CMS and accelerator experts from FCC
 - CLIC 380 GeV proposal is coordinated by CLIC working group
 - 250 GeV ILC proposal is coordinated by Linear Collider Collaboration
 - Rare muon decays program is proposed to be coordinated by mu2e, COMET and MEG
- Coordination within communities over coming months, in consultation with EPPS secretariat, to develop white papers strategy


Future Colliders - Summary

- Colliders played major role in establishing and understanding the standard model
 - Discovered all expected standard model particles
- Future proposed colliders are of two types
 - e⁺e⁻ colliders as "Higgs factory"
 - pp colliders as the next energy frontier
- Three proposals are under active discussion
 - ILC (Japan) decision by Japan's Government is expected this year
 - CepC Higgs factory (China) decision by 2021
 - FCC (CERN) European strategy outcome by early 2020
- At Fermilab we have a group engaged in the future colliders activities and preparations for the next Snowmass/P5 process
 - Subscribe at strategicplanning-energyfrontier@listserv.fnal.gov

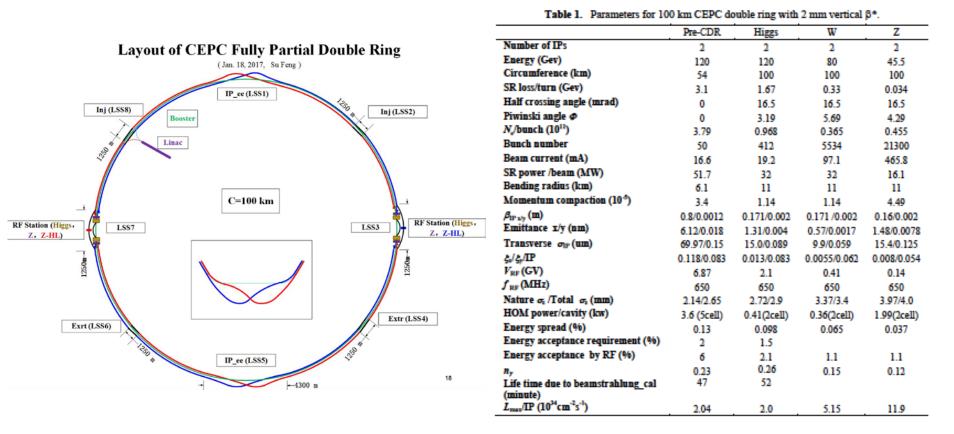

ILC Physics and Experiments




- Low cross sections high luminosity needed
- Point like particles colliding
 - Can be used for multiple precision measurements of all Standard Model particles
 - Higgs couplings down to ~1% accuracy
- Large number of different production/decay channels

Fermilab's ILC Contributions

- Superconducting accelerating cavities (SCRF)
 - Synergy with SLAC light source accelerating cryomodules
- R&D in accelerator systems, including controls
- Design of the ILC detectors



- Two excellent results for SCRF cavities obtained at Fermilab recently
 - Substantial Q factor increase of the cavities with nitrogen doping
 - Fermilab's cryomodule reached ILC specification of 31.5 MV/m

CepC Design with 100 km Ring

- Over last year China decided to go to 100 km (vs 54km) ring
 - Considerably less challenging design
 - Greater potential for future machines in the same tunnel

🗲 Fermilab

Future pp Colliders at CERN

parameter	FCC-hh		HE-LHC	(HL) LHC				
collision energy cms [TeV]	100		100 27					
dipole field [T]	16		16		16		16	8.33
circumference [km]	100		27	27				
straight section length [m]	1400		528	528				
# IP	2 main & 2		2&2	2 & 2				
beam current [A]	0.5		1.12	(1.12) 0.58				
bunch intensity [10 ¹¹]	1	1 (0.2)	2.2 (0.44)	(2.2) 1.15				
bunch spacing [ns]	25	25 (5)	25 (5)	25				
rms bunch length [cm]	7.55		7.55 7.55					
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1				
events/bunch crossing	170	1k (200)	~800 (160)	(135) 27				
stored energy/beam [GJ]	8.4		1.3	(0.7) 0.36				
beta* [m]	1.1-0.3		1.1-0.3 0.25		0.25	(0.20) 0.55		
norm. emittance [µm]	2.2 (0.4)		2.5 (0.5)	(2.5) 3.75				

HE-LHC is "High Energy" LHC in the LHC tunnel with double field magnets

