

Development, Simulation, and Prototype Performance Measurements of the Mu2e Straw Tracker

Richie Bonventre Fermilab Users Meeting June 20th, 2018

Lawrence Berkeley National Lab

Outline

- 1. Brief overview of Mu2e and physics motivation
- 2. Mu2e straw tracker design
- 3. Tracker Prototype low level measurements
- 4. Simulating the tracker
- 5. Comparing resolution + efficiency from prototype data and simulation

See upcoming talk by Tomonari Miyashita for more details on the experiment!

Charged Lepton Flavor Violation

• Mu2e will search for neutrinoless conversion of a muon to an electron in a nuclear environment:

$$\mu^- N
ightarrow e^- N$$

• This would violate **charged lepton flavor**, something that has never been seen before

- Any detection of charged lepton flavor violation would be an unambiguous sign of new physics! (SM contribution is $< 10^{-50}$)
- Mu2e goal is a 10⁴ improvement!

The Mu2e Experiment at Fermilab

- Stop 10¹⁸ muons on Aluminum
- Conversion produces monoenergetic 105 MeV electrons
- Main background is decay-in-orbit electrons
- Only distinguishable by momentum, want high precision measurement that can handle high rate

The Straw Tracker Detector

- Cylindrical straw tracker operating in uniform field
- Tracker is in vacuum
 - Measurement is multiple scattering dominated
 - · Entire detector much less than one radiation length of material

Tracker Configuration

- 18 stations, each containing 12x 120° panels for stereo measurement
- Blind to DIO electron momentum peak and beam flash
- Expected resolution better than 200 keV/c

The Straw Tracker Detector

- \sim 21,000 low mass straw tubes in vacuum
 - 5mm diameter, 0.5-1.2m long
 - 15μ m mylar wall, 25μ m tungsten wire
 - 1 atm of 80/20 Ar:CO₂, wire at 1425V

What are we measuring

- Individual threshold crossings digitized in time (TDC)
 - Drift time \rightarrow radial resolution ${\sim}200~\mu{\rm m}$
- Straws are instrumented on both sides
 - Time division \rightarrow longitudinal resolution ${\sim}4$ cm
- Falling edge digitized for Time over threshold
 - Measure of path length / radius independent of t_0
- ADC measures pulse waveform for background rejection

Tracker Electronics

Tracker FPGAs and Firmware

- Most of functionality in FPGAs highly configurable
 - Have already taken advantage to add new features (Time over threshold)
 - Originally had Altera FPGAs, now using Microsemi SmartFusion2 for radiation tolerance
- 2x Digi FPGAs that digitize 48 channels each
 - Separate TDCs for each end of straw
 - Continous readout of summed ADC waveform at 50 MHz
- Data buffering, DAQ communication, tracker slow controls in ROC FPGA

Firmware TDC Design

- Need ${\sim}4\text{cm}$ resolution longitudinally along straw
 - Near speed of light signal \rightarrow $<\!100 \text{ps}$ time resolution
- Achieve resolution in firmware while minimizing resource usage
 - Initial design based on wave-union design by Jinyuan Wu
 - Delay chain for sub-clock tick precision
 - Average multiple chains to subdivide large delays
 - Auto calibration of bin widths

10/23

FPGA resource usage for 48 channel design

- Have managed to implement design that fits all 48 channels in a single chip
- Learning process dealing with Microsemi FPGAs
 - Architecture changes from Altera version
 - Much smaller community, support resources
 - Difficulties with timing constraints manual placement of delay chains and ADC interface
 - Several hour compilation time for full design
- Demonstrated readout chain from digitizing FPGAs through to DAQ computer over SERDES

An 8-straw tracker prototype for testing and performance measurements

- Portable self-contained setup
 - + Cross talk \rightarrow proton beam from 88" cyclotron at Berkeley Lab
 - Radiation sensitivity \rightarrow UC Berkeley High Flux Neutron Source
 - Straw and electronics parameters \rightarrow radioactive sources
 - Efficiency/resolution → cosmic rays
- Read out over USB serial using custom DAQ

Sources used to measure gain, energy resolution, time division, simulation tuned to results

- Gas gain by measuring current with ⁵⁵Fe
- Energy resolution using 5.9 keV x-ray peak

Simulation of the straw tracker response

- Detailed Geant4 simulation of full detector
- Custom code takes energy deposition in each straw and models physics and electronics response

Simulation of waveform threshold crossing at each end of straw

• Each ion cluster modelled individually, including drift, wire propagation, and electronics response

Simulation of the electronics response

(Data from Manolis Kargiantoulakis)

- Use unshaped waveforms from source at different distances to model attenuation, dispersion
- Fit for transfer function describing preamp and integrator response
 - Model includes saturation effects, pulse shape distortion
 - Important for accurately determining proton discrimination, modelling pileup

Reconstructing track position for performance measurements

- Use PMT trigger and ATLAS FEI4 pixel detectors to allow precise reconstruction of cosmic ray tracks
 - MIPs similar to conversion electron signal
 - Allow resolution and efficiency

measurements

Reconstructing track position for performance measurements

- ATLAS FEI4 detectors measure track position
 - 2.0x1.9cm chips, $250x50\mu m$ pixels
- PMT trigger gives t₀ for drift time measurement
 - \sim 600ps time resolution
- Reconstruct relative position and timing of pixels, PMTs, straws, wires with maximum likelihood fit

Transverse resolution

Transverse resolution

Longitudinal resolution and efficiency

• Efficiency measured at many voltages/thresholds to determine optimal running conditions

Time over threshold

- With just hit time measurement, require *t*₀ estimate from track reconstruction before drift time can be determined
 - Time over threshold allows a measure of path length (and thus radial distance) independent of t_0
- Implemented in firmware, being added to reconstruction
- Simulation agrees well with data
 - Shows predictive power of detailed model

Track Resolution

momentum resolution at start of tracker (simulation)

- Sensitivity studies now include results of simulation tuned to prototype measurements
- Track resolution depends on hit level resolution and efficiency, as well as reconstruction techniques

- Mu2e will search for CLFV with greatly improved sensitivity
- Straw tracker provides a precise momentum measurement, made possible by timing and waveform measurements from the straws
- 8-straw prototype was used to tune detailed simulation of straw physics and electronics
- Hit level performance proven with prototype
- Momentum resolution will allow us to reach our sensitivity goals!