Information on precautionary site access restrictions to Fermilab's Batavia site in response to coronavirus/COVID-19
We continue to review all events currently planned for the next sixty days and organizers will be notified if their event must be canceled, postponed, or held remotely. Please, check back on Indico during this time for updates regarding your meeting specifics.
As DOE O 142.3A, Unclassified Foreign Visits and Assignments Program (FVA) applies not only to physical access to DOE sites, technologies, and equipment, but also information, all remote events hosted by Fermilab must comply with FVA requirements. This includes participant registration and agenda review. Please contact Melissa Ormond, FVA Manager, with any questions.

indico search will be reestablished in the next version upgrade of the software: https://getindico.io/roadmap/
For public events you may use either https://library.fnal.gov/indico-search/ or your browser's search engine: "your search string" site:indico.fnal.gov

18-19 June 2018
Fermilab, Wilson Hall
US/Central timezone

NOvA Muon Disappearance Results 2018

Jun 19, 2018, 4:45 PM
15m
One West (Fermilab, Wilson Hall)

One West

Fermilab, Wilson Hall

Oral Presentation Long Baseline Neutrino Program

Speaker

Dmitrii Torbunov

Description

An overview of the recent results from the NOvA muon neutrino disappearance analysis is presented. NOvA is an accelerator based neutrino experiment designed to study the electron neutrino appearance in the muon neutrino beam as it travels from the Near Detector facility at Fermilab to the Far Detector in the Northern Minnesota. The NOvA muon neutrino disappearance group has recently introduced new analysis techniques which greatly improved the experiment's sensitivity. And now for the first time we have data from the beam operating in the antineutrino mode. This, together with an updated detector simulation and new neutrino selection algorithms, allowed NOvA to achieve jointly the world leading estimation of the neutrino oscillation parameter $\Delta m_{23}^2$.

Primary author

Presentation Materials