NOvA's Short-baseline Tau Neutrino Appearance Search New Perspectives 2018 Rijeesh Keloth rijeeshk@fnal.gov (for NOvA Collaboration) June 19, 2018 Fermilab, USA Cochin University of Science and Technology, India # The NOvA Experiment - Off-axis long-baseline neutrino oscillation experiment - A narrow energy flux peaks at 2 GeV with a high energy tail, as the detectors are located 0.8° off NuMI beam axis - Near Detector: 105 m underground 1 km from target 0.3 kton #### Sterile Neutrinos The probability for ν_{τ} appearance and ν_{μ} disappearance using a 3+1 neutrino oscillation model in Short-BaseLine(SBL) approximation: $$\mathsf{P}_{\stackrel{(-)}{\nu_{\mu}} \to \stackrel{(-)}{\nu_{\tau}}} = \sin^2 2\theta_{\mu\tau} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$ where $\sin^2 2\theta_{\mu\tau} \equiv 4|U_{\mu 4}|^2|U_{\tau 4}|^2$ = $\cos^4 \theta_{14} \sin^2 2\theta_{24} \sin^2 \theta_{34}$ $$P_{\nu_{\mu} \to \nu_{\mu}}^{(-)} = 1 - \sin^2 2\theta_{\mu\mu} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$ where $\sin^2 2\theta_{\mu\mu} = \cos^2 \theta_{14} \sin^2 \theta_{24}$ ### **Analysis Overview** - Neutrinos in narrow-band beam peaked at 2 GeV predominantly created by pion decays - ▶ But τ threshold is ~3.4 GeV τ threshold (3.4 GeV) True Energy (GeV) — ν_u Total v, from Kaon v_{μ} from Pion - Looking at the high energetic neutrinos coming from kaons above τ treshold - ▶ Search for $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations SBL v_r Appearance 10⁷ Events/0.5(GeV)/10²¹ POT #### Neutrino Interactions in NOvA $ightharpoonup u_{\mu}$ CC : Long Track $ightharpoonup u_e$ CC : Electronic Shower ▶ NC : Hadrons • ν_{τ} CC : τ Decay #### Neutrino Interactions in NOvA ### au Decay Modes ► hadronic (~ 65%) and leptonic: ▶ This analysis looks only for hadronic mode τ decays. ## **Analysis Strategy** ## Joint ν_{μ} - ν_{τ} Fit • ν_{τ} event rates are maximized for $\Delta m^2 = 22 eV^2$ as looking at high energy region with low L/E. - Use convolutional neural network based PIDs and BDTs as primary selectors. - A joint ν_μ-ν_τ fit to constrain huge systematic uncertainties. - ► Rate only fit to the 3+1 oscillation parameters: Δm^2_{41} , $\sin^2 2\theta_{\mu\tau}$ and $\sin^2 \theta_{24}$. ### ν_{μ} Event Selection # $u_{\mu} \rightarrow \nu_{\mu}$ Selection - A convolutional neural network based PID (ν_μ CVN) is used as a primary selector. - Preselection cuts: To ensure the event quality and to remove the interactions in the surroundings of the detector #### ν_{τ} Event Selection ### $\nu_{\mu} \rightarrow \nu_{\tau}$ Selection ▶ 3 BDTs are used as the primary selectors (ν_{μ} , $\nu_{\rm e}$, $NC - \nu_{\tau}^{had}$ Discriminants) Preselection cuts: To ensure the event quality and to remove the interactions in the surroundings of the detector #### ν_{τ} Event Selection # $\nu_{\mu} ightarrow \nu_{ au}$ Selection # Signal Predictions Table: Scaled to 8.06×10^{20} POT. The predictions are for fixed parameters, $\Delta m_{41}^2 = 22 \ eV^2$ and $\theta_{\mu_{\tau}} = 0.175$ rad. # Systematic Uncertainties #### u_{τ} Selection • ν_{τ} cross-sections are not well constrained yet, so we added a 50% normalization uncertainty on just ν_{τ} cross-section. # Systematic Uncertainties # u_{μ} Selection • Cross-section uncertainty and beam uncertainty are the dominant uncertainties for ν_{μ} selection. #### Sideband Studies ### u_{μ} and u_{τ} Sidebands ► A mid ν_{μ} CVN sideband region for ν_{μ} Selection • A high NC CVN sideband region for ν_{τ} selection ## Sensitivity ### ν_{μ} - ν_{τ} Joint Fit Marginalized over sin²θ₃₄ and sin²2θ₂₄ • Marginalized over $\sin^2 \theta_{34}$. ### **Summary & Conclusions** - ▶ The NOvA SBL $\nu_{\mu} \nu_{\tau}$ joint analysis is promising. - We conducted the systematic uncertainty studies for both the ν_{μ} and ν_{τ} selections used in this joint analysis. - ▶ We looked at the data in two different side-band regions for ν_{τ} and ν_{μ} selections. - The data and MC are in good agreement in those regions within the systematic uncertainty. http://novaexperiment.fnal.gov