NOvA's Short-baseline Tau Neutrino Appearance Search

New Perspectives 2018

Rijeesh Keloth rijeeshk@fnal.gov

(for NOvA Collaboration)

June 19, 2018

Fermilab, USA Cochin University of Science and Technology, India

The NOvA Experiment

- Off-axis long-baseline neutrino oscillation experiment
- A narrow energy flux peaks at 2 GeV with a high energy tail, as the detectors are located 0.8° off NuMI beam axis
- Near Detector:
 105 m underground
 1 km from target
 0.3 kton

Sterile Neutrinos

The probability for ν_{τ} appearance and ν_{μ} disappearance using a 3+1 neutrino oscillation model in Short-BaseLine(SBL) approximation:

$$\mathsf{P}_{\stackrel{(-)}{\nu_{\mu}} \to \stackrel{(-)}{\nu_{\tau}}} = \sin^2 2\theta_{\mu\tau} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$

where $\sin^2 2\theta_{\mu\tau} \equiv 4|U_{\mu 4}|^2|U_{\tau 4}|^2$ = $\cos^4 \theta_{14} \sin^2 2\theta_{24} \sin^2 \theta_{34}$

$$P_{\nu_{\mu} \to \nu_{\mu}}^{(-)} = 1 - \sin^2 2\theta_{\mu\mu} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$

where $\sin^2 2\theta_{\mu\mu} = \cos^2 \theta_{14} \sin^2 \theta_{24}$

Analysis Overview

- Neutrinos in narrow-band beam peaked at 2 GeV predominantly created by pion decays
- ▶ But τ threshold is ~3.4 GeV

τ threshold (3.4 GeV)

True Energy (GeV)

— ν_u Total

v, from Kaon

 v_{μ} from Pion

- Looking at the high energetic neutrinos coming from kaons above τ treshold
- ▶ Search for $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations

SBL v_r Appearance

10⁷ Events/0.5(GeV)/10²¹ POT

Neutrino Interactions in NOvA

 $ightharpoonup
u_{\mu}$ CC : Long Track

 $ightharpoonup
u_e$ CC : Electronic Shower

▶ NC : Hadrons

• ν_{τ} CC : τ Decay

Neutrino Interactions in NOvA

au Decay Modes

► hadronic (~ 65%) and leptonic:

▶ This analysis looks only for hadronic mode τ decays.

Analysis Strategy

Joint ν_{μ} - ν_{τ} Fit

• ν_{τ} event rates are maximized for $\Delta m^2 = 22 eV^2$ as looking at high energy region with low L/E.

- Use convolutional neural network based PIDs and BDTs as primary selectors.
- A joint ν_μ-ν_τ fit to constrain huge systematic uncertainties.
- ► Rate only fit to the 3+1 oscillation parameters: Δm^2_{41} , $\sin^2 2\theta_{\mu\tau}$ and $\sin^2 \theta_{24}$.

ν_{μ} Event Selection

$u_{\mu} \rightarrow \nu_{\mu}$ Selection

- A convolutional neural network based PID (ν_μ CVN) is used as a primary selector.
- Preselection cuts: To ensure the event quality and to remove the interactions in the surroundings of the detector

ν_{τ} Event Selection

$\nu_{\mu} \rightarrow \nu_{\tau}$ Selection

▶ 3 BDTs are used as the primary selectors (ν_{μ} , $\nu_{\rm e}$, $NC - \nu_{\tau}^{had}$ Discriminants)

Preselection cuts: To ensure the event quality and to remove the interactions in the surroundings of the detector

ν_{τ} Event Selection

$\nu_{\mu} ightarrow \nu_{ au}$ Selection

Signal Predictions

Table: Scaled to 8.06×10^{20} POT. The predictions are for fixed parameters, $\Delta m_{41}^2 = 22 \ eV^2$ and $\theta_{\mu_{\tau}} = 0.175$ rad.

Systematic Uncertainties

u_{τ} Selection

• ν_{τ} cross-sections are not well constrained yet, so we added a 50% normalization uncertainty on just ν_{τ} cross-section.

Systematic Uncertainties

u_{μ} Selection

• Cross-section uncertainty and beam uncertainty are the dominant uncertainties for ν_{μ} selection.

Sideband Studies

u_{μ} and u_{τ} Sidebands

► A mid ν_{μ} CVN sideband region for ν_{μ} Selection

• A high NC CVN sideband region for ν_{τ} selection

Sensitivity

ν_{μ} - ν_{τ} Joint Fit

 Marginalized over sin²θ₃₄ and sin²2θ₂₄

• Marginalized over $\sin^2 \theta_{34}$.

Summary & Conclusions

- ▶ The NOvA SBL $\nu_{\mu} \nu_{\tau}$ joint analysis is promising.
- We conducted the systematic uncertainty studies for both the ν_{μ} and ν_{τ} selections used in this joint analysis.
- ▶ We looked at the data in two different side-band regions for ν_{τ} and ν_{μ} selections.
- The data and MC are in good agreement in those regions within the systematic uncertainty.

http://novaexperiment.fnal.gov