

Design of the Mu2e Straw Tracker

Kate Ciampa University of Minnesota

New Perspectives at Fermilab June 19, 2018

Tracker in the Context of the Mu2e Apparatus

- The Mu2e experiment searches for charged lepton flavor violation, when a muon converts to an electron inside an aluminum atom
- In the Detector Solenoid, tracker and calorimeter measure properties of signal electrons from this process
- Electrons move downstream from stopping target, and tracker determines momenta by fitting their helical trajectories through a magnetic field

Mu2e Tracker Challenges

- Sensitivity goal for the muon conversion measurement sets challenging physics goals for the tracker
 - Must determine electron momenta with better than 0.2% resolution
 - Use minimal material to avoid signal electron energy loss
 - Maintain efficiency at high hit rates
 - Operate in a strong magnetic field and high radiation environment

Energy Loss in Material

Example of energy loss for muon

For comparison, Mu2e electron has γβ=205

- Particles lose energy as they pass through material, and Mu2e must minimize this effect for signal electrons
- Energy as a function of distance traveled decreases more rapidly for material with more protons, characterized by radiation length X₀

$$E(x) = E_0 \exp\left(\frac{-x}{X_0}\right)$$
 with X_0 -8.9cm for aluminum

The Mu2e tracker can only use a very small amount of metal - even just 3cm of aluminum would cause 30% energy loss for electron

Signal Electron vs. Background Spectrum

- Muon conversion produces a monoenergetic electron with kinetic energy nearly equal to the muon rest mass, $E_e \sim 105 MeV$
- Energy from normal muon decay at rest is shared among electron and neutrinos, with maximum $E_e = m_\mu/2$
- For muon orbiting a nucleus in the aluminum target, decay spectrum has high energy tail that extends out to signal region
- Tracker must measure momentum with better than 0.2% resolution to separate conversion electrons from normal muon decay products

Track momentum, MeV/c

How is momentum measured with sufficient precision to identify conversion electron candidates?

Mu2e Tracker Components - Straws

 The tracker will use over 20,000 straw drift cells to locate high energy electrons based on ionization events along their trajectories

Mu2e Straws

Mu2e Tracker Components - Panels

Mu2e Panel

- A panel holds 96 straws parallel under tension, and has space for readout electronics
- Panels of straws arranged in a circle around the beamline intercept only electrons with large transverse momentum
- Low energy electrons from muon decay, and beam muons, will pass through the hole along the axis of the detector

A Mass Spectrometer for a Massive Quantity of Electrons

- A particle of mass m and charge q moves perpendicular to a magnetic field. What is the radius of its trajectory?
- Magnetic force provides centripetal acceleration

$$F = |q\vec{v} \times \vec{B}| = \frac{mv^2}{r}$$

 Track radius found from known momentum, or vice versa

$$r = \frac{mv_{\perp}}{aB} = \frac{p_{\perp}}{aB}$$

- In Mu2e detector, magnetic field is uniform 1T and signal electron has q=-e
- For limiting case where all momentum is transverse, p_⊥=105MeV/c

$$r = \frac{p_{\perp}}{eB} = 35cm$$

Mu2e tracker instrumentation is positioned to contain these trajectories How is a conversion electron trajectory located within the tracker?

Mu2e Tracker Components - Straws

- The tracker will use over 20,000 straw drift cells to locate high energy electrons based on ionization events along their trajectories
- To minimize multiple scattering, which alters electron momentum, straws use minimal material and are surrounded by vacuum
- Straws account for only about half of the active detector mass, comparable to the drift gas inside

Mu2e Straws

Straw into Gold Gold into Straws

- Straws are made of low-mass metalized Mylar
- Wound from 15µm thick strips, with layers of aluminum to separate drift gas from vacuum and gold for conductivity
- Similar in diameter to drinking straws, with lengths varying from 44 to 114cm

Metalized Mylar - Raw Material for Straws

Signal Electron Path Through Straws

 A high energy electron ionizes Ar:CO₂ gas in the straws, producing a cascade of secondary electrons that drift toward a central 25μm sense wire

Intro Physics in Real Life: Gauss' Law

 Electric field between conductors with cylindrical symmetry can be found with Gauss' Law

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{enc}}{\varepsilon}$$

 Effective charge λ found by relating field to potential difference

$$\Delta V = -\int \vec{E} \cdot d\vec{l} = \frac{-\lambda}{2\pi\varepsilon} \ln(r) + const.$$

 Straw is grounded (cathode) with radius r_s=2.5mm, and sense wire is at 1450V (anode) with radius r_w=12.5µm

$$E(r) = \frac{V_w}{r \ln(r_s/r_w)}$$

- Due to this electric field, secondary electrons drift toward sense wire
- Displacement of wire inside straw, or increase in voltage, can cause electrical breakdown

When an ionization event takes place in a straw, how is it detected?

Tracker Electronics

- Just outside active detector region, front-end electronics will amplify and digitize the signal from ionization events
- Highly segmented detector capable of readout efficiency in high hit rate averaging around 15 kHz/cm²
- Electronics must also withstand neutron and photon flux produced when muons interact with stopping target nuclei

Ionization Signal

 Readout at both ends of the straw constrains hit position along straw axis, within several cm

- Timing of the current pulse from an electron cascade gives the distance from ionization event to wire, based on electron drift velocity
- Measure current pulse time to within 2ns for 100µm resolution in hit position

With so many particles passing through the tracker, how do we know if a hit is from a conversion electron or another particle?

Finding a Conversion Electron in a Haystack

- Particle trajectories are simulated segment by segment using Monte Carlo methods in GEANT4, based on measured properties of the tracker
- Analysis goal: distinguish pattern of conversion electron hits
- Group hits by time and fit geometrically, using several iterations to reach a helix with <0.2% momentum resolution

Exciting Times Ahead...

- Mu2e has the potential to discover charged lepton flavor violation in muon to electron conversion, a previously unobserved process that would indicate the existence of new physics
- To reach a single event sensitivity of 3x10⁻¹⁷, electron momenta must determined with better than 0.2% resolution
- The Mu2e solution to this challenge is an innovative straw tracker design
 - Drift cell straws have ultra low mass to minimize energy loss and multiple scattering
 - A central hole to avoid beam particles and low energy electrons
 - Highly segmented active detector volume to maintain efficiency at high hit rates

...check back in 2021 to see the initial physics data!