Information on precautionary site access restrictions to Fermilab's Batavia site in response to coronavirus/COVID-19
We continue to review all events currently planned for the next sixty days and organizers will be notified if their event must be canceled, postponed, or held remotely. Please, check back on Indico during this time for updates regarding your meeting specifics.
As DOE O 142.3A, Unclassified Foreign Visits and Assignments Program (FVA) applies not only to physical access to DOE sites, technologies, and equipment, but also information, all remote events hosted by Fermilab must comply with FVA requirements. This includes participant registration and agenda review. Please contact Melissa Ormond, FVA Manager, with any questions.

indico search will be reestablished in the next version upgrade of the software: https://getindico.io/roadmap/
For public events you may use either https://library.fnal.gov/indico-search/ or your browser's search engine: "your search string" site:indico.fnal.gov

18-19 June 2018
Fermilab, Wilson Hall
US/Central timezone

Search for Large Extra Dimensions and Compositeness in μ+μ- and e+e- channels in proton-proton collisions at sqrt(s)=13 TeV in CMS"

Jun 18, 2018, 3:15 PM
15m
One West (Fermilab, Wilson Hall)

One West

Fermilab, Wilson Hall

Oral Presentation Collider Physics

Speaker

Prakash Thapa (Wayne State University)

Description

Non-resonant excesses in dilepton invariant mass spectra are predicted by several beyond the standard model (BSM) theories. In this search, two theoretical models, large extra dimensions (LED) and Compositeness are considered, and the status of the search in the mass range 400-5000 GeV will be presented using 2016 data collected by CMS detector. In LED, space-time is extended by an additional number (n) of compactified dimensions. In this model, all standard model particles are localized in a (3+1) dimension (the brane). However, gravity propagates to all (n+3) +1 dimensions (the bulk). In Compositeness, quarks and leptons are composite structures, bound states of more fundamental constituents called preons. Below the interaction energy scale Λ, the strength of binding of constituents is very strong and binds preons to a composite state. At this energy scale, the effect of Compositeness can be visible as a four-fermion contact interaction. In our search three helicity models LL, LR and RR are considered. The signature of LED and Compositeness might be observed as a deviation from the prediction of the SM Drell-Yan process at high masses.

Primary author

Prakash Thapa (Wayne State University)

Co-author

Presentation Materials