Theories of Fission

Topical Program: FRIB and the GW170817 Kilonova

July, 19th 2018

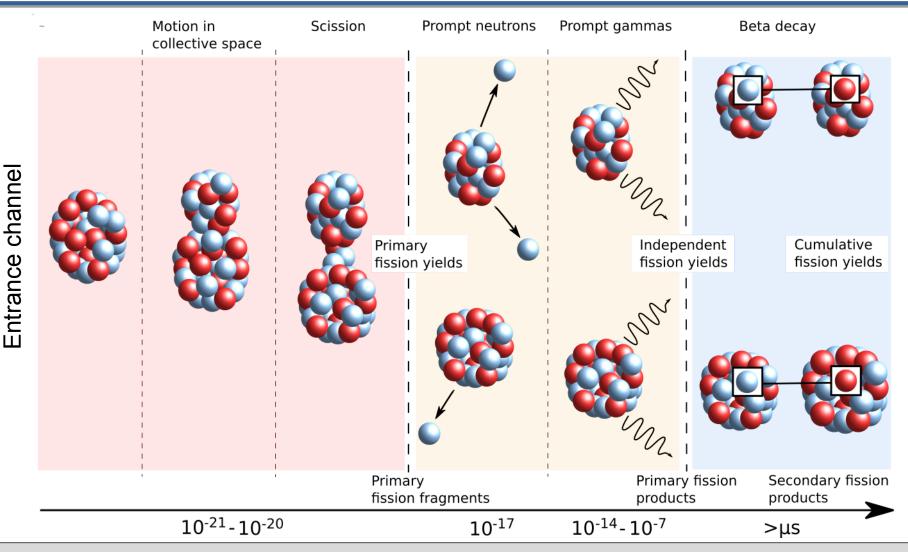
Nicolas Schunck

LLNL-PRES-737743

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Characteristics of Fission

Multi-scale Quantum Dynamical Process

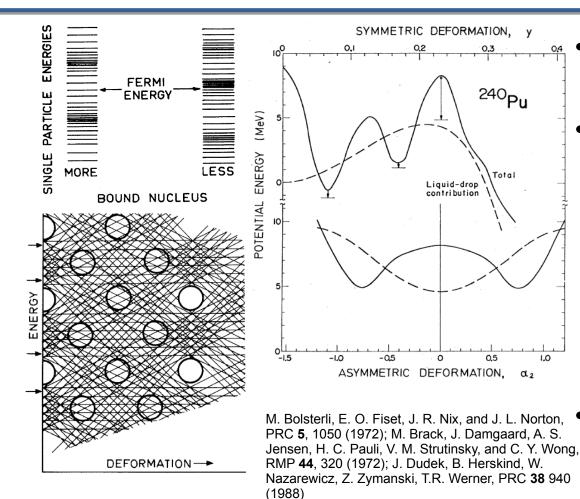


Outline

- Introduction
- Static Nuclear Properties
 - Macroscopic-Microscopic Approach
 - Nuclear Density Functional Theory
- Fission Dynamics
 - Classical Dynamics (Stochastic Langevin Equations)
 - Quantum Dynamics ("Collective")
 - Quantum Dynamics ("Non-collective")
- Fission Spectrum
- Concluding Remarks

Macroscopic-microscopic Models (1/4)

A phenomenological approach to nuclear structure



Start with deformed liquid drop(let)

- Take into account nucleon degrees of freedom
 - Shell correction coming from the distribution of single-particle levels
 - Pairing correction to mock up effects of residual interactions
- Extensions to finite angular momentum or temperature

Macroscopic-microscopic Models (2/4)

The total binding energy is a sum of several components

• Total energy is written

$$E(\boldsymbol{q}) = E_{\text{mac}}(\boldsymbol{q}) + \delta R_{\text{shell}}(\boldsymbol{q}) + \delta R_{\text{pair}}(\boldsymbol{q})$$

• Macroscopic liquid drop energy

 $E_{\text{mac}}(\boldsymbol{q}) = E_{\text{vol}} + E_{\text{surf}}(\boldsymbol{q}) + E_{\text{asym}}(\boldsymbol{q}) + E_{\text{Coul.}}(\boldsymbol{q})$

• Shell correction

$$\delta R_{\rm shell}(\boldsymbol{q}) = \sum e_n - \left\langle \sum e_n \right\rangle$$

- Pairing correction n n n $\delta R_{\rm pair}({m q}) = E_{\rm pair} - \tilde{E}_{\rm pair}$
- Shell and pairing corrections require a set of single-particle energies
 e_n: need to solve the Schrödinger equation

J. Dudek, T. Werner, ADNDT 50, 179 (1992) J. Dudek, T. Werner, ADNDT 59, 1 (1995); N. Schunck, J. Dudek, B. Herskind, PRC **75** 054304 (2007); P. Möller, A. Sierk, T. Ichigawa, H. sagawa, ADNDT **109**, 1 (2012)

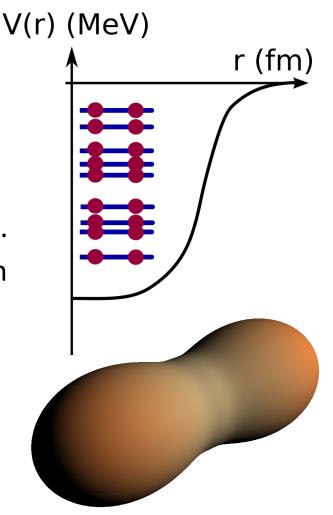
Macroscopic-microscopic Models (3/4)

Deformations are collective d.o.f, single particles intrinsic d.o.f

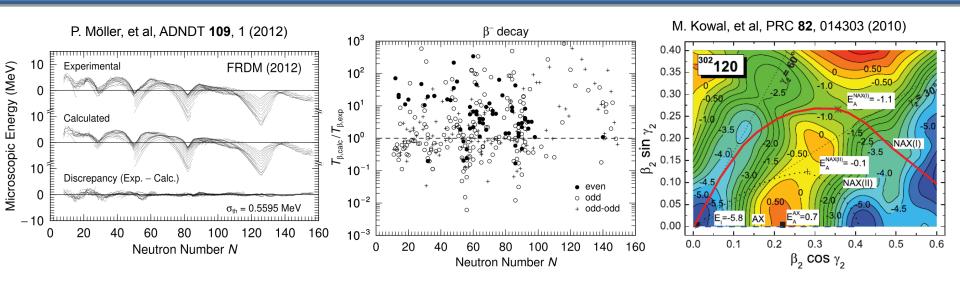
• (One-body) Schrödinger equation

$$\left[-\frac{\hbar^2}{2m}\boldsymbol{\nabla}^2 + V_{\boldsymbol{q}}(\boldsymbol{r})\right]\boldsymbol{\varphi}_{\boldsymbol{n}}(\boldsymbol{r}) = e_{\boldsymbol{n}}\boldsymbol{\varphi}_{\boldsymbol{n}}(\boldsymbol{r})$$

- Nuclear mean-field potential can be Nilsson, Woods-Saxon, Folded-Yukawa, etc.
- Solve BCS equation to compute occupation of s.p. states and extract pairing energy
- How does that apply to fission?
 - Deformation of the nuclear shape drive the fission process (=collective variables)
 - Compute energy for different deformations → potential energy surfaces



Macroscopic-microscopic Models (4/4) Examples

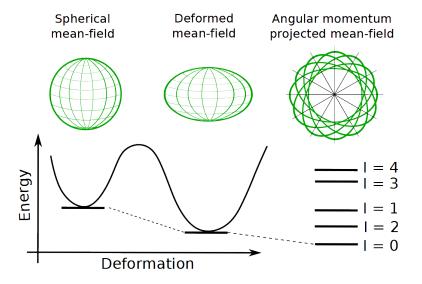


- Global theory: many properties of all nuclei in the nuclear chart
- Fast: many calculations need only a laptop
- Inconsistent framework
 - Each theoretical piece (macro, micro, pairing, RPA, etc.) is treated independently of the others
 - Predictive power has not really changed since the 1970ies

Nuclear Density Functional Theory (1/3) DFT is a remapping of the quantum many-body problem

- Quantum mechanics rules: Start with best estimate of a realistic nuclear Hamiltonian
- Replace the exact wave function by a simpler form, the reference state: a product state
- Replace exact Hamiltonian with +effective one such that $\langle \Psi | \hat{H} | \Psi \rangle \approx \langle \Phi | \hat{H}_{eff.} | \Phi \rangle = E[\rho, \kappa]$
- Energy is a functional of density of particles and pairing tensor
- Spontaneous symmetry breaking

P. Hohenberg and W. Kohn, PR **136**, B864 (1964); W. Kohn and L. J. Sham, PR **140**, A1133 (1965); J. Engel, PRC **75**, 014306 (2007); M Bender, P.H. Heenen, P.-G. Reinhard, RMP **75**, 121 (2003); J. Messud, M. Bender, and E. Suraud, PRC **80**, 054314 (2009).



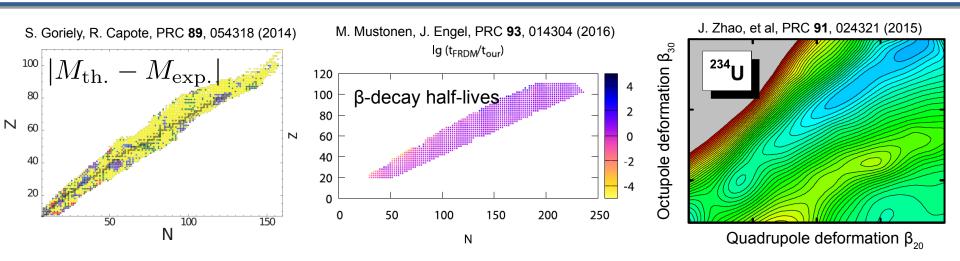
National Nuclear Security Administration

Nuclear Density Functional Theory (2/3)

The densities contain all degrees of freedom of the system

- Form of the energy functional chosen by physicists, often guided by characteristics of nuclear forces (central force, spin-orbit, tensor, etc.): Skyrme, Gogny, etc.
- Variational principle: determine the actual densities of the nucleus by requiring the energy is minimal with respect to their variations
 - Resulting equation is called HFB equation (Hartree-Fock-Bogoliubov)
 - Solving the equation gives densities and characteristics of the reference state
- Any observable can be computed when we know the density $\langle \Phi | \hat{Q}_{20} | \Phi
 angle = \int d^3 {m r} \;
 ho({m r}) Q_{20}({m r})$
- One can compute potential energy surfaces by solving the HFB equation with constraints on the value of the collective variables

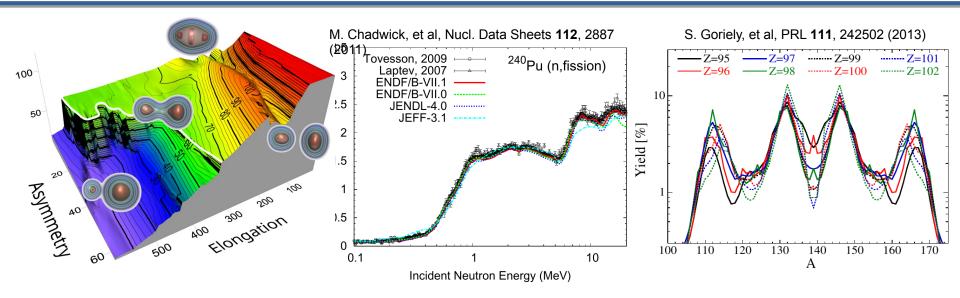
Nuclear Density Functional Theory (3/3) Examples



- Global theory: many properties of all nuclei in the nuclear chart
- Consistent framework: a single energy functional and quantum many-body methods
- Computationally expensive
 - Mass-table-scale calculations require supercomputers
 - Computing potential energy surfaces is an art

Fission Observables

Static approaches can be used to compute some fission observables



- Fission barriers inputs to compute fission cross-sections (=rates)
 - Reduction multi-dimensional \rightarrow 1-dimensional (arbitrary)
 - Assume parabolic shape (not justified)
 - Neglect collective inertia
- Statistical theory gives (rather poor) estimates of primary fission yields

Classical Dynamics (1/3)

Fission is a stochastic diffusion process in the collective space

 How to extract fission product yields from the knowledge of the potential energy surface?

Friction tensor

- Analogy with classical theory of diffusion
- Collective variable = generalized coordinate
- Define related momentum
- Langevin equations $\dot{q}_{\alpha} = \sum B_{\alpha\beta} p_{\beta},$

Fluctuation-dissipation theorem

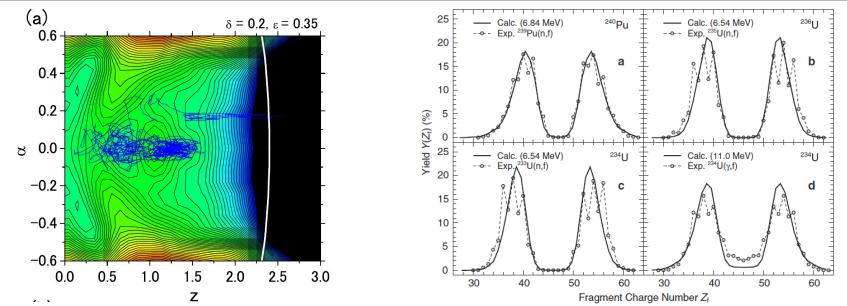
$$\sum \Theta_{ik} \Theta_{kj} = \Gamma_{ij} T$$

k

Random force

$$\dot{p}_{\alpha} = -\sum_{\beta\gamma} \Gamma_{\alpha\beta} B_{\beta\gamma} p_{\gamma} + \sum_{\beta} \Theta_{\alpha\beta} \xi_{\beta}(t) -\frac{1}{2} \sum_{\beta\gamma} \frac{\partial B_{\beta\gamma}}{\partial q_{\alpha}} p_{\beta} p_{\gamma} - \frac{\partial V}{\partial q_{\alpha}}$$

Classical Dynamics (2/3) Practical examples



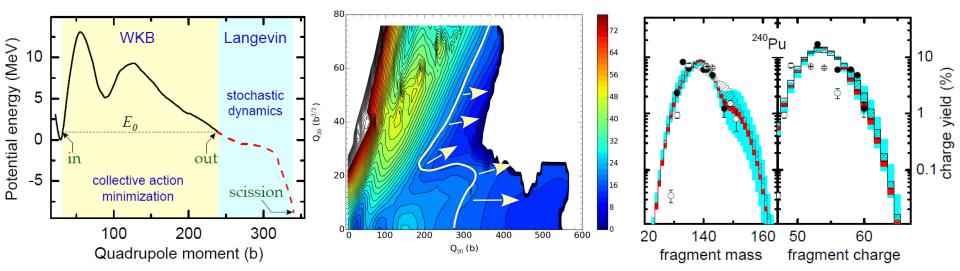
P. Nadtochy and G. Adeev, PRC **72**, 054608 (2005); P. N. Nadtochy, A. Kelić, and K.-H. Schmidt, PRC **75**, 064614 (2007); J. Randrup and P. Möller, PRL **106**, 132503 (2011); J. Randrup, P. Möller, and A. J. Sierk, PRC **84**, 034613 (2011); P. Möller, J. Randrup, and A. J. Sierk, PRC **85**, 024306 (2012); J. Randrup and P. Möller, PRC **88**, 064606 (2013); J. Sadhukhan, W. Nazarewicz and N. Schunck, PRC **93**, 011304 (2016), J. Sadhukhan, W. Nazarewicz and N. Schunck, PRC **96**, 061361 (2017).

- Start beyond the saddle point (or close enough)
- Build trajectories through the collective space by generating at each step the needed random variable
- Enough trajectories (in the thousands) allow reconstructing FPY

Classical Dynamics (3/3)

Langevin classical dynamics is ideal tool for spontaneous fission

J. Sadhukhan, W. Nazarewicz and N. Schunck, Phys. Rev. C 93, 011304 (2016); J. Sadhukhan, W. Nazarewicz, C. Zhang and N. Schunck, Phys. Rev. C (R) 96, 061301 (2017)



- SF mass distributions can be obtained by combining quantum tunneling techniques (half-lives) and classical dynamics
 - Collective inertia plays critical role in determining tunneling probability (= τ_{sc})
 - Evolution from saddle to scission done with Langevin dynamics (=classical with microscopic inputs (energy, inertia)
 - Dissipation tensor still cause of significant uncertainty

Quantum Dynamics - TDGCM (1/3) Computing the flow of probability in the collective space

Ansatz for the time-dependent many-body wave function

$$|\Psi(t)\rangle = f_1(t)|\langle 0\rangle + f_2(t)|\langle 0\rangle + f_3(t)|\langle 0\rangle + f_3(t$$

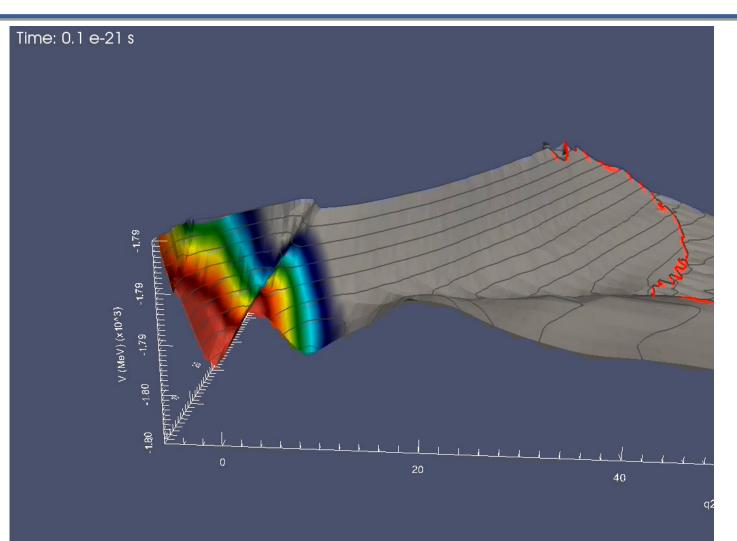
 Minimization of the time-dependent quantum mechanical action + ansatz + Gaussian overlap approximation + some patience

$$i\hbar \frac{\partial}{\partial t} g(\mathbf{q}, t) = \left[-\frac{\hbar^2}{2} \sum_{kl} \frac{\partial}{\partial q_k} B_{kl} \frac{\partial}{\partial q_l} + V(\mathbf{q}) \right] g(\mathbf{q}, t)$$

- Interpretation
 - $g(\mathbf{q},t)$ is probability amplitude to be at point \mathbf{q} at time t
 - Related probability current
 - Flux of probability current through scission line gives yields

J.-F. Berger, M. Girod, D. Gogny, CPC **63**, 365 (1991); H. Goutte, J.-F. Berger, P. Casoli, D. Gogny, PRC **71** 024316 (2005); D. Regnier, N. Dubray, N. Schunck, and M. Verrière, PRC **93**, 054611 (2016); D. Regnier, M. Verrière, N. Dubray, and N. Schunck, CPC **200**, 350 (2016)

Quantum Dynamics - TDGCM (2/3) Example: TDGCM Evolution



Lawrence Livermore National Laboratory

Quantum Dynamics – TDGCM (3/3) Examples: Fission Product Yield Calculations

8 sf (Harbour, 1973) ²⁵⁴Fm $E_n = 0.0 \text{ MeV}$ $E_n = 1.0 \text{ MeV}$ sf (Gindler, 1977) 6 6 5 Yield Yield (normalized to 200) $\mathbf{2}$ 2 0 sf (Flynn, 1972) ²⁵⁶Fm nf (Flynn, 1975) 6 0 $E_{n} = 2.0 \text{ MeV}$ $E_{n} = 3.0 \text{ MeV}$ 6 5 Yield *****•••**•**•••**•**••••**•**• 3 D1S (pre n emission) ²⁵⁸Fm 2 16• sf (Hoffman, 1980) sf (Hulet, 1989) 0 ▲ nf (Flynn, 1975) 126 $E_n = 4.0 \text{ MeV}$ $E_{n} = 5.0 \text{ MeV}$ 5 4 Xield 8 2 4 1 0 120 80 100 140 80 100 120 140 80 100 120160180 Fragment mass Fragment mass 140Mass

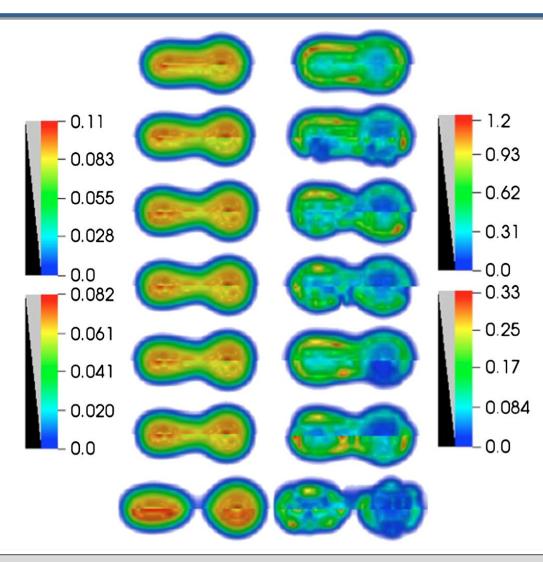
Lawrence Livermore National Laboratory LLNL-PRES-737743

Quantum Dynamics – TDDFT (1/3) TDDFT simulates a single fission even in real time

- Main limitation of Langevin and TDGCM: adiabaticity is built-in
 - Need to precompute potential energy surfaces (costly)
 - Invoke arbitrary criteria for scission
 - Phenomenological models of dissipation = exchange between intrinsic (=single-particle) and collective degrees of freedom
- Solution: Generalize DFT to time-dependent processes
 - No adiabaticity: excited fragments, dynamical excitations at scission, clear definition of TKE, etc.
 - Enormous computational cost
- Scope
 - Best for fission fragment properties (E*, TKE, angular momentum)
 - Needs extensions for FPY to include dissipation mechanisms

C. Simenel, PRL **105** 192701 (2010); C. Simenel, A. Umar, PRC(R) **89** 031601 (2014); C. Scamps, C. Simenel, D. Lacroix, PRC **92** 011602 (2015); A. Bulgac, P. Magierksi, K. Roche, I. Stetcu, PRL **116** 122504 (2016); Y. Tanimura, D. Lacroix, S. Ayik, PRL **118** 152501 (2017)

Quantum Dynamics – TDDFT (2/3) Examples



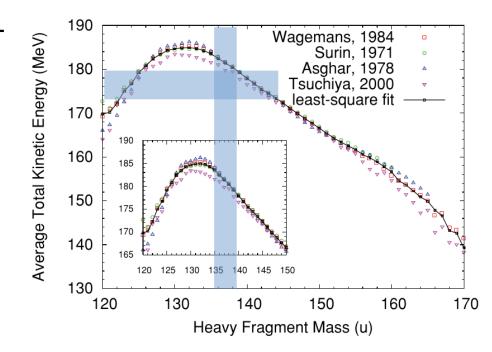
A. Bulgac, P. Magierksi, K. Roche, I. Stetcu, PRL **116** 122504 (2016)

Quantum Dynamics – TDDFT (3/3)

Early results in ²⁴⁰Pu show we can estimate energy sharing

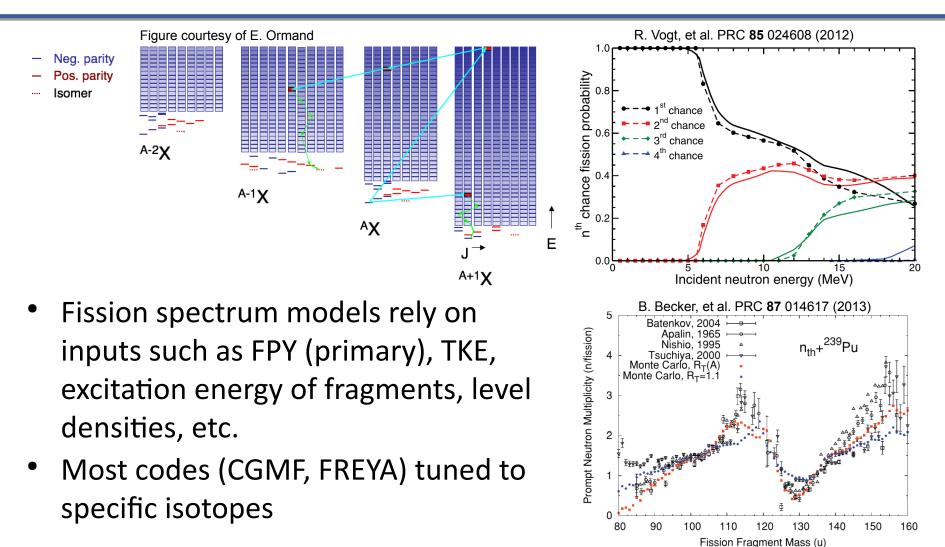
Label	$E_{ m ini}$	TKE	N_H	Z_H	N_L	Z_L	E_H^*	E_L^*	TXE	TKE+TXE
SeaLL1-1	-1808.0 ± 2.4	177.8 ± 2.8	83.5 ± 0.4	53.2 ± 0.4	62.8 ± 0.5	41.1 ± 0.4	17.0 ± 2.4	20.1 ± 2.0	37.1 ± 2.7	214.9 ± 2.4
SeaLL1-2	-1813.9 ± 1.1	178.0 ± 2.3	82.9 ± 0.4	52.9 ± 0.2	63.3 ± 0.5	41.5 ± 0.3	19.5 ± 3.8	14.0 ± 1.9	33.5 ± 5.1	211.5 ± 3.3
$\rm SkM^*$ -a	-1780.5 ± 2.2	174.5 ± 2.5	84.1 ± 0.9	53.0 ± 0.5	61.8 ± 0.9	40.9 ± 0.5	16.6 ± 3.1	14.9 ± 2.3	31.5 ± 3.8	206.0 ± 2.4
$\rm SkM^*$ -s	-1780.2	149.0	73.4	47.2	72.6	46.7	29.4	28.5	57.9	206.9

- Total energy conserved in TDDFT
 ⇒ Total kinetic energy can be computed explicitly
- Total energy of fragment give their excitation energy
 ⇒ TDDFT gives prescription to determine sharing of excitation energy at scission



Fission Spectrum

Computing neutrons and gammas from fragment deexcitation



National Nuclear Security Administration 21

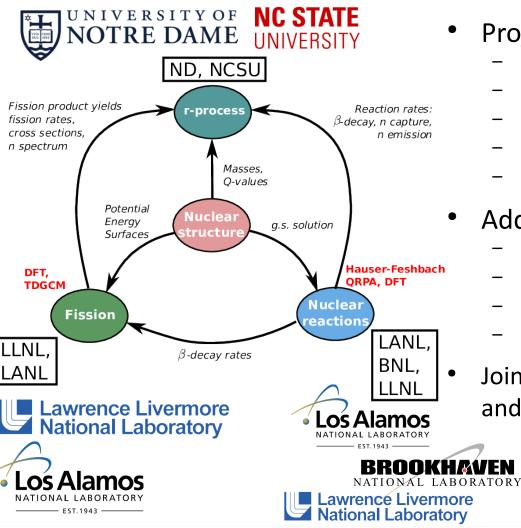
Conclusions

Fission models are predictive but expensive to use

- Two main approaches to compute global nuclear properties
 - Macroscopic-microscopic approaches
 - Nuclear density functional theory
- Realistic simulations of fission dynamics can predict
 - Spontaneous fission half-lives
 - Primary (independent) fission yields
 - Fission spectra
- Three major challenges
 - Interfacing all these models and scale up to mass-table types of calculations
 - Understanding and modeling uncertainties
 - Maintaining and expanding in-house know-how: a workforce issue

The FIRE Topical Collaboration

Bringing together experts in fission theory, nuclear data and nuclear astrophysics



- Project team
 - LLNL: N.Schunck (PI), R. Vogt
 - LANL: T. Kawano, P. Talou, A. Hayes
 - BNL: A. Sonzogni, L. McCutchan
 - Notre Dame: R. Surman
 - North Carolina State: G. McLaughlin
- Additional participants
 - 1 postdoc at LANL
 - 1 postdoc at Notre Dame
 - 1 graduate student at NCSU
 - 1 summer student at LLNL
- Jointly funded by DOE/NP, DOE/USNDP and NA221 (Non-proliferation)

