Accurate Neutrino Transport in Supernovae and Mergers

Sherwood Richers, NC State University Gail McLaughlin, NC State University Yonglin Zhi, NC State University Hiroki Nagakura, Caltech

Neutrinos in Core-Collapse Supernovae

(Couch & O'Connor 2013)

Neutrinos drive explosion through **heating**, my drive neutron star **kick**, and may be observed soon.

- Turbulence/SASI drive asymmetric radiation
- Velocities few % speed of light
- Delicate balance determines explodability

Neutrinos in Neutron Star Mergers

Neutrinos drive **outflows**, modify **composition**.

- Complex geometry
- Relativistic orbital velocity
- Strongly GR
- Smaller optical depth than CCSN (in disk)

 $f(x^{\mu}, p^{\mu})$ is (# of neutrinos) per (volume) per (energy) per (solid angle)

Classical Boltzmann Equation

$$\frac{1}{c}\frac{\mathrm{df}}{\mathrm{d}\tau} = \mathcal{C}$$

 $f(x^{\mu}, p^{\mu})$ is (# of neutrinos) per (volume) per (energy) per (solid angle)

Classical Boltzmann Equation

$$\frac{1}{c}\frac{\mathrm{df}}{\mathrm{d}\tau} = \mathcal{C}$$

Discrete Ordinates

 $f(x^{\mu}, p^{\mu})$ is (# of neutrinos) per (volume) per (energy) per (solid angle)

Classical Boltzmann Equation

$$\frac{1}{c}\frac{\mathrm{df}}{\mathrm{d}\tau} = \mathcal{C}$$

Monte Carlo Ray-Tracing

 $f(x^{\mu}, p^{\mu})$ is (# of neutrinos) per (volume) per (energy) per (solid angle)

$$\frac{1}{c}\frac{\mathrm{df}}{\mathrm{d}\tau} = C$$

$$f = \frac{(E)}{(F^i)}$$

$$(P^{ij})$$

Flux-Limited Diffusion Two-Moment (M1)

 $f(x^{\mu}, p^{\mu})$ is (# of neutrinos) per (volume) per (energy) per (solid angle)

Classical Boltzmann Equation

$$\frac{1}{c}\frac{\mathrm{df}}{\mathrm{d}\tau} = \mathcal{C}$$

Left Side: Expand the derivative

$$\frac{\mathrm{df}}{\mathrm{d}\tau} = \frac{\partial f}{\partial \tau} + \frac{\mathrm{dx}^{\mu}}{\mathrm{d}\tau} \frac{\partial f}{\partial x^{\mu}}$$

Right Side: Integrate collision rate with other things $(1 + 2 \leftrightarrow 3 + 4)$

$$\mathcal{C} \sim \int \mathrm{d}^3 \mathbf{p}_2 \int \mathrm{d}^3 \mathbf{p}_3 \int \mathrm{d}^3 \mathbf{p}_4 \,\, \mathrm{R}(\mathrm{f}_1,\,\mathrm{f}_2,\,\mathrm{f}_3,\,\mathrm{f}_4,\,\mathbf{p}_1,\,\mathbf{p}_2,\,\mathbf{p}_3,\,\mathbf{p}_4)$$

- Take fluid snapshot
- 2 Emit
- Propagate& Absorb
- Scatter

3D Interpolate:

- Metric (and derivatives)
- Opacities/Emissivities
- Scattering Kernels
- Velocity

- Take fluid snapshot
- 2 Emit
- Propagate& Absorb
- Scatter

Emit:

- Random location
- Random direction
- Random energy

- Take fluid snapshot
- 2 Emit
- Propagate& Absorb
- Scatter

Propagate & Absorb:

- Random distance $PDF(d) = \sigma_s e^{-\sigma_s d}$
- Absorb continuously
- Accumulate f

- Take fluid snapshot
- 2 Emit
- Propagate& Absorb
- Scatter

Scatter:

Random direction & energy

- Take fluid snapshot
- 2 Emit
- Propagate& Absorb
- Scatter

Scatter:

Random direction & energy

- Take fluid snapshot
- 2 Emit
- Propagate& Absorb
- Scatter

Let's Explore the CCSN Neutrino Field

CCSN: Neutrino Field

CCSN: Neutrino Field

CCSN: Neutrino Heating

Few % difference in net gain between two "exact" methods

Heating in PNS is very stiff.

Let's Explore the Merger Neutrino Field

Hydro: Radice+2017

Lots of structure in higher moments.

MERGERS: How well does leakage do?

Richers+2015

Yes, there are differences that should be checked.

MERGERS: How well does M1 do?

Unlike CCSNe, M1 has sizable errors

Kershaw

Levermore MEFD ME

Wilson

Monte Carlo transport may be able to fix the problems (e.g., Foucart+2018)

But wait...

Neutrinos can change flavor.

Pure oscillations in neutron star mergers

Neutrino-matter resonance efficiently transforms neutrinos.

Oscillations could affect outflows

Neutrinos can change flavor!

$$\frac{1}{p_0}p^i\partial_i f = -i[H, f] + \mathcal{C}[f, \bar{f}, \rho, Y_e, T]$$

Hacking Quantum Kinetics

$$\frac{1}{p_0}p^i\partial_i f = -i[H, f] + \mathcal{C}[f, \bar{f}, \rho, Y_e, T]$$

(See Vlasenko et al. 2014)

$$\frac{df}{dr} = \begin{bmatrix} \epsilon_e & 0 \\ 0 & \epsilon_\mu \end{bmatrix} + \int \frac{d\Omega}{4\pi} \begin{bmatrix} \kappa_{e,s} f_{b,ee} & 0 \\ 0 & \kappa_{\mu,s} f_{b,\mu\mu} \end{bmatrix} - \begin{bmatrix} \kappa_e f_{ee} & 0 \\ 0 & \kappa_\mu f_{\mu\mu} \end{bmatrix}$$

Emission

In-Scattering

Absorption & Out-Scattering

Hacking Quantum Kinetics

$$\frac{1}{p_0}p^i\partial_i f = -i[H, f] + \mathcal{C}[f, \bar{f}, \rho, Y_e, T]$$

(See Vlasenko et al. 2014)

$$\frac{df}{dr} = \begin{bmatrix} \epsilon_e & 0 \\ 0 & \epsilon_\mu \end{bmatrix} + \int \frac{d\Omega}{4\pi} \begin{bmatrix} \kappa_{e,s} f_{b,ee} & \kappa_{\mu,s} f_{b,e\mu} \\ \kappa_{\mu,s} f_{b,\mu e} & \kappa_{\mu,s} f_{b,\mu\mu} \end{bmatrix} - \begin{bmatrix} \kappa_e f_{ee} & \frac{\kappa_e + \kappa_\mu}{2} f_{e\mu} \\ \frac{\kappa_e + \kappa_\mu}{2} f_{\mu e} & \kappa_\mu f_{\mu\mu} \end{bmatrix}$$

Emission

In-Scattering

Absorption & Out-Scattering

Note:

- pair annihilation is treated as absorption
- neutrino-neutrino scattering is ignored
- scattering is elastic and isotropic

Multiple Oscillations Modes

Matter-Neutrino Resonance!

Synchronized MSW

Too many electrons!

Conclusions and Caveats

- Monte Carlo gives detailed angular information.
- Two-moment transport seems to work decently in CCSNe.
- Mergers simulations can greatly benefit from better neutrino transport.
- **Neutrinos change flavor** dynamics/composition effects is an open question!
- QKE Improvement Needs:
 - The **single-angle** approximation.
 - The **two-flavor** approximation.
 - The scattering kernels lack phase information and fermi-blocking.
 - Background neutrino field is inconsistent with the interaction rates.
 - Background neutrino/matter field is axisymmetric.
 - Only one background tested.

Monte Carlo Random Walk Approximation

