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Limits on computations 
for cold dense matter

• lattice QCD gives good 
result at finite temperature, 
but is stymied currently at 
finite density

• perturbative QCD: only valid 
at asymptotically high 
densities

• can’t calculate properties of 
cold dense matter, must 
observe!
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Compact Stars

Unique laboratory for extreme physics

• formed from the collapse of a massive 
star in a supernova explosion

• static structure determined by Equation 
of State (pressure vs. density)

Demorest et al. 
(2010)

credit: D. Page



Compact Stars

Unique laboratory for extreme physics

• formed from the collapse of a massive 
star in a supernova explosion

• static structure determined by Equation 
of State (pressure vs. density)

NICER mission



Best constraints from observation so far

Dense matter in neutron stars

Properties Observables

equations of 
state

mass, radius, tidal 
deformation, MoI…

thermal & 
transport 

properties, 
vortex pinning 

cooling, spin-down, 
glitches, neutrinos, 

GW…

-Massive pulsars observed ~2 solar masses
-Pre-merger GW signals detected limit tidal deformability

©NASA



-Nuclear symmetry parameter constraints
-Neutron-skin thickness of neutron-rich nuclei

Low-energy Theory/Experiment

Tews, Lattimer, Ohnish & Kolomeitsev, arXiv:1611.07133
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-phase transition parameters

Three Scenarios of NS 

Normal hadronic stars Nuclear matter EoS

Self-bound strange 
quark stars

Hybrid stars with quark 
core & nuclear mantle

Strange matter EoS (assumed 
as true ground state of QCD)

EoS with phase 
transition at critical 
pressure

-continuous and smooth density 
profile -stiffness (symmetry energy)

-bag constant; quark 
interaction; pairing

-“bare” surface with a finite 
density discontinuity

-abrupt density change inside the 
star at phase boundary



-Tidal Love numbers 0.05~0.15
-Speed of sound monotonically increasing with pressure from zero

Normal hadronic EoSs

Postnikov, Prakash & Lattimer, 
arXiv:1004.5098



 energy density is constant everywhere inside the star, but 
jump to zero at the surface

-Technical problem: matching boundary conditions properly
-First studied in the incompressible limit: 

EoSs with discontinuity

Damour & Nagar, 
arXiv:0906.0096

->
 delta-function singular term proportional to 3/R

-Applicable to any sharp interface with abrupt density change
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-Model-independent parametrization of high-density matter

Generalize to PTs in hybrid stars

Zdunik & Haensel, arXiv:1211.1231
Alford, SH & Prakash, arXiv:1302.4732
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Tidal Parameters with PT

-Model-independent parametrization of high-density matter
-Sizable decrease in both k2 and R above PT: deviated trajectories



-Model-independent parametrization of high-density matter
-Sizable decrease in both k2 and R above PT: deviated trajectories

Tidal Parameters with PT



Smoothing to a crossover

-No singularity (good for simulations!), but rapidly changing behavior

Alford, Harris & Sachdeva, arXiv:1705.09880
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-    values slightly lower compared to sharp 1st-order transition
-Agrees with the discontinuous limit as

Smoothing to a crossover
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Constraints on PT-like EoSs

-Massive pulsars observed ~2 solar masses
-Pre-merger GW signals detected limit tidal deformability

Better knowledge of 
nuclear matter helps
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Combined tidal deformability

-Strikingly insensitive to the mass ratio                     for nuclear matter
-Chirp mass measured to high accuracy -> estimate range of 



Combined tidal deformability

-Allows for direct probe of NS radius for purely-hadronic models
-Chirp mass measured to high accuracy -> estimate range of 
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Theoretical lower bound

Soft nuclear matter + strong 
phase transition immediately 
above saturation -> lowest



Theoretical lower bound

Soft nuclear matter + strong 
phase transition immediately 
above saturation



Theoretical lower bound

Soft nuclear matter + strong 
phase transition immediately 
above saturation

-NSs obey the same EoS (!) 
Is stiffer EoS like DBHF 
completely ruled out?

Phys. Rev. Lett. 119, 161101
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Theoretical lower bound

-NSs obey the same EoS (!) 
Is stiffer EoS like DBHF 
ruled out?

-Could we identify phase 
transition through future 
detections?

Soft nuclear matter + strong 
phase transition immediately 
above saturation



Theoretical lower bound

-NSs obey the same EoS (!) 
Is stiffer EoS like DBHF 
ruled out?

-Could we identify phase 
transition through future 
detections?

-Is it possible to distinguish 
NS-NS, HS-HS and NS-HS 
mergers?

Soft nuclear matter + strong 
phase transition immediately 
above saturation



• Dense matter EoSs categorized in terms of 
  a) monotonically increasing and smooth

  b) abrupt discontinuity

  c) smooth but varies rapidly in short range of pressures 

  (novel feature to emerge in simulations?)

• Theoretical lowest value of NS tidal deformability is determined by phase 
transition from soft NM to stiffest QM

• Better constraints to expect
  a) narrow down uncertainties in NM: theory & experiment

  b) multiple detections to map  

• Future work 

   role of PTs in properties other than (zero-T) EoS

Summary



e.g. First simulation with quarks

-Evolution of temperature and density of the remnant
-Different post-merger GW signal
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Most et al., 
arXiv:1807.03684
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e.g. First simulation with quarks

-Evolution of temperature and density of the remnant
-Different post-merger GW signal



THANK YOU!

Q & A



BACKUP 

SLIDES



Updated LIGO Analysis

LVC Collaboration, arXiv:1805.11579
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-star surface at zero pressure 
-gravitational mass of the star

For the interior of a spherical, static, relativistic star,

ε(p)
where the included mass is defined as

For a given equation of state (EoS), TOV can be solved simultaneously for 
the radial distribution of pressure and that of energy density.
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Third-family NSs

-Below the red line in regions B 
and C, there is a connected 
hybrid star branch

-In regions B and D, there is a 
disconnected hybrid star branch

Soft NM (HLPS) + QM
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 Alford, SH & Prakash, arXiv:1302.4702
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CSS Phase Diagram

preliminary
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