Experiments for the r process at IGISOL

Anu Kankainen

Email: anu.kankainen@jyu.fi
IGISOL at JYFL Accelerator Laboratory
JYFL Accelerator Laboratory

www.jyu.fi/accelerator

Image: Google
JYFL Accelerator Laboratory

www.jyu.fi/accelerator

- Located at the Department of Physics, University of Jyväskylä
- Three accelerators (K130 and MCC30 cyclotrons and 1.7 MV Pelletron)
- Over 6000 h beamtime every year
JYFL Accelerator Laboratory

- Pelletron
- MARA
- RITU
- Reactions
- RADEF
- cLinac
- K130
- MCC30
- IGISOL-4
The IGISOL facility

IGISOL - a fast and universal method to produce radioactive beams

J. Årje, J. Äystö et al., PRL 54 (1985) 99

MCC-30

K-130

Offline ion source

Mass number A

RFQ

Cooler & Buncher

A. Nieminen et al., PRL 88 (2002) 094801

Target chamber

Production method:
30 MeV p beam on U or Th

JYFLTRAP

Mass measurements & Post-trap spectroscopy

Mass measurements for the r process at IGISOL
"...we found that uncertainties in nuclear masses and fission properties need to be reduced in order to better constrain the role of NS-NS mergers on the chemical evolution of r-process elements using LIGO/Virgo's detections."

M.R. Mumpower et al., PPNP 86 (2016) 86
Mass measurements - JYFLTRAP

7 T superconducting solenoid

PURIFICATION TRAP
- select the ions of interest for mass measurements or decay spectroscopy

PRECISION TRAP
- mass measurements using TOF-ICR (time of flight ion cyclotron resonance) or PI-ICR (phase-imaging ICR) techniques
Mass measurements

Ion’s cyclotron resonance frequency:

\[\nu_c = \nu_+ + \nu_- = \frac{qB}{2\pi m} \]

B determined using a reference ion:

\[m = \frac{\nu_c^{\text{ref}}}{\nu_c} (m_{\text{ref}} - m_e) + m_e \]

THIS IS VALID BOTH FOR TOF-ICR AND PI-ICR METHODS
Mass measurements

TOF-ICR
- ν_c determined from the time-of-flight spectrum

PI-ICR
- ν_c determined from the phase ϕ of the ions after a phase accumulation time t

$$\nu = \frac{\phi + 2\pi n}{2\pi t}$$

Roosbroeck et al., PRL 92, 112501 (2004)

$T_{RF} = 900 \text{ ms} + 3000 \text{ ms}$ for cleaning

100 ms accumulation time
Neutron-rich nuclides measured at JYFLTRAP

More than 200 neutron-rich nuclides measured so far

Focus of this talk
• Rare-earth region
• 132Sn region (shortly)
• 78Ni region (shortly)
Rare-earth region
Formation of the rare-earth abundance peak

See also: talk by N. Vassh “Lanthanide production in r-process nucleosynthesis” last week

FISSION RECYCLING?

DEFORMATION FUNNELING THE FLOW?

S. Goriely et al., PRL 111 (2013) 242502

M. Mumpower et al., PRC 85 (2012) 045801.
M. Mumpower et al., PPNP 86 (2016) 86.
E(2+) energies and a kink at N=100

\[\frac{E(4^+)}{E(2^+)} \approx 3.3 \]

rigid rotor

Z. Patel et al., PRL 113 (2014) 262502
Two-neutron separation energies S_{2n}

M. Vilén et al., PRL 120, 262701 (2018)

Onset of deformation

No kink at $N=100$
Neutron separation energies S_n

6 nuclides measured for the first time!

Less odd-even staggering
- Lower for $N=96,98,100,102$
- Higher for $N=97,99,101$

Measured with JYFLTRAP:
156,158Nd ($Z=60$), 158,160Pm ($Z=61$), 162Sm ($Z=62$), 162,163Eu ($Z=63$), $^{163-166}$Gd ($Z=64$), 164Tb ($Z=65$)
Neutron pairing metrics D_n

$$D_n(N) = (-1)^{N+1} [S_n(Z, N + 1) - S_n(Z, N)] = 2\Delta^3(N)$$

Empirical neutron pairing gap a.k.a. odd-even staggering parameter

Experimental neutron pairing weaker than predicted by theoretical models when approaching the midshell!

$M. \; Vilén \; et \; al., \; PRL \; 120, \; 262701 \; (2018)$
Impact on the r-process calculations

New S_n values result in smoother calculated abundance distributions and in a better agreement with the observed pattern.

- **(a)** Merger with two 1.35M_{\odot} neutron stars. ($Y_e = 0.016$, initial $s/k_B \sim 8$)

- **(b)** A low-entropy, hot wind ($Y_e = 0.15$, $s/k_B = 10$)

Changes up to 25% observed. Mainly due to revised neutron-capture rates.

Baseline: AME16 exp. + FRDM12

Neutron-capture rates: TALYS
Region close to 132Sn: In isotopes
Neutron-rich indium isotopes

129,131In and their isomers already measured at IGISOL3

J. Hakala et al., PRL 109, 032501 (2012)
A. Kankainen et al., PRC 87, 024307 (2013)

✓ 128In and 130In measured at IGISOL4
✓ Post-trap decay spectroscopy

Dipolar Ramsey cleaning method:
clean samples for mass measurements and post-trap decay spectroscopy

Region close to ^{78}Ni
Interesting region both for nuclear structure and astrophysics

NUCLEAR STRUCTURE
Evolution of the Z=28 and N=50 shell gaps? Shape coexistence?

Core collapse supernovae

Neutron star crust

R.N.Wolf et al., PRL 110, 041101 (2013)
Several new masses measured

For example masses of ^{70}Co and $^{74,75}\text{Ni}$ measured for the first time!

![Graphs showing mean TOF (μs) vs. RF frequency (Hz) for $^{70}\text{Co}^+$ and $^{75}\text{Ni}^+$ with $N_{\text{ions}} = 299$ and 314, respectively.]

Analysis ongoing!
Decay spectroscopy for the r process at IGISOL
First determination of P_{2n} above $A=100$: ^{136}Sb

R. Caballero-Folch, I. Dillmann et al., arXiv:1803.07205 [nucl-ex]

- JYFLTRAP to select $^{136}\text{Sb}^+$ ions
- $P_{2n}=0.31(5)\%$ is a factor of 20 smaller than predicted by FRDM + QRPA

J. Agramunt et al., NIMA 807(2016) 69
Total Absorption Spectroscopy (TAS)

TAS on $^{87,88}\text{Br}$ and ^{94}Rb: observed gamma decays above S_n!

J. L. Tain et al., PRL 115 (2015) 062502
MONSTER (MOdular Neutron SpectrometeTER) NuSTAR@FAIR

- 8 modules at IGISOL
- Liquid scintillator detector
- Gamma-neutron separation from pulse shape
- First online tests later this year using 85As ($P_n = 59.4(24)\%$)

T. Martínez et al., Nuclear Data Sheets 120 (2014) 78
Versatile programme to study neutron-rich nuclei at IGISOL

Mass measurements:
- PI-ICR commissioned
- MR-TOF to be installed later this year

Decay studies:
- Isotopically or even isomerically pure beams for experiments
- New phase-dependent cleaning method

Production:
- Neutron-induced fission?
- Multinucleon transfer reactions?
Acknowledgements

IGISOL (Univ. of Jyväskylä)
L. Canete, T. Eronen, A. Jokinen, I.D. Moore, D.A. Nesterenko, H. Penttilä, I. Pohjalainen, S. Rinta-Antila, A. de Roubin, M. Vilén, and J. Äystö and all the collaborators related to the discussed experiments!

Rare-earths:
A. Aprahamian, M. Brodeur, J. Kelly, T. Kuta, W.S. Porter, R. Surman
Univ. Of Notre Dame

M.R. Mumpower
Los Alamos National Laboratory

132Sn region:
A. Bruce, Univ. Brighton
Z. Podolyak, Univ. Surrey

78Ni region:
B. Bastin, S. Giraud et al., GANIL

This work has been supported by the Academy of Finland under grants No. 275389 and 284516 as well as under the Finnish Centre of Excellence Programme 2012-2017 (Nuclear and Accelerator Based Physics Research at JYFL).
Nuclear and astrophysics aspects for the rapid neutron capture process in the era of multi-messenger observations
July 1 - 5, 2019
ECT*, Trento, Italy