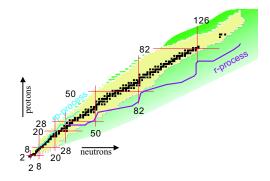
Global Calculations of β Decay for the r Process

J. Engel

July 27, 2018

Nuclear Landscape

To locate the site(s) of the *r* process, need reaction rates and properties in very neutron-rich nuclei.



 β decay particularly important. Increases Z throughout the r process, and competition with neutron capture during freeze-out can have large effect on abundances.

Zero-range density-dependent effective potential, treated in mean-field theory.

Zero-range density-dependent effective potential, treated in mean-field theory.

Can be represented as density functional:

$$\mathcal{E} = \int d^{3}r \left(\underbrace{\mathcal{H}_{\text{even}} + \mathcal{H}_{\text{odd}}}_{\mathcal{H}_{\text{Skyrme}}} + \mathcal{H}_{\text{kin.}} + \mathcal{H}_{\text{em}} \right)$$

Zero-range density-dependent effective potential, treated in mean-field theory.

Can be represented as density functional:

$$\mathcal{E} = \int d^{3}r \left(\underbrace{\mathcal{H}_{even} + \mathcal{H}_{odd}}_{\mathcal{H}_{Skyrme}} + \mathcal{H}_{kin.} + \mathcal{H}_{em} \right)$$

 \mathcal{H}_{odd} has no effect in mean-field description of J = 0 states (e.g. ground states), but large effect in β decay.

Zero-range density-dependent effective potential, treated in mean-field theory.

Can be represented as density functional:

$$\mathcal{E} = \int d^{3}r \left(\underbrace{\mathcal{H}_{\text{even}} + \mathcal{H}_{\text{odd}}}_{\mathcal{H}_{\text{Skyrme}}} + \mathcal{H}_{\text{kin.}} + \mathcal{H}_{\text{em}} \right)$$

 \mathcal{H}_{odd} has no effect in mean-field description of J = 0 states (e.g. ground states), but large effect in β decay.

QRPA: time-dependent mean-field theory with small harmonic perturbation by β -decay transition operator.

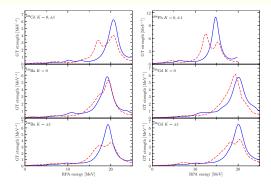
Matrix elements of operator between the initial state and final excited states at $E = \hbar \omega$ obtained from response of nucleus oscillating with frequency ω .

I. What We've Done

Fast Skyrme QRPA in Deformed Nuclei

Finite-Amplitude Method (Nakatsukasa et al.)

Strength functions computed directly, in orders of magnitude less time than with usual QRPA.

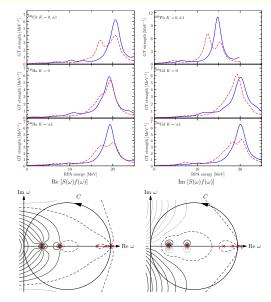


Fast Skyrme QRPA in Deformed Nuclei

Finite-Amplitude Method (Nakatsukasa et al.)

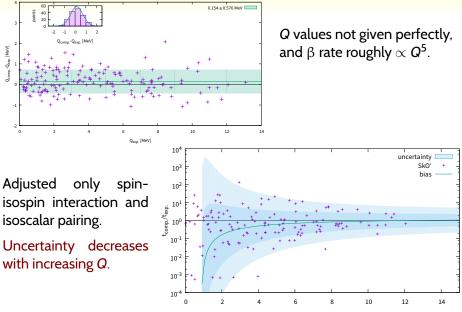
Strength functions computed directly, in orders of magnitude less time than with usual QRPA.

Beta-decay rates obtained by integrating strength with phase-space weighting function in contour around excited states below threshold.



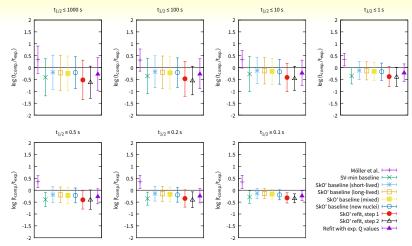
Fit of \mathcal{H}_{odd} and Results

Accuracy of the computed Q values with SkO



Q_{comp}.

Lots of Other Fitting Attempts



Meh.... Not doing as well as we had hoped.

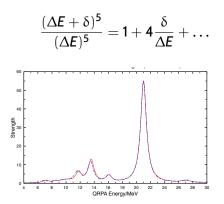
Is the QRPA near its limits? We think so.

But We Really Care About High-Q/Fast Decays

> These are the most important for the *r* process.

But We Really Care About High-Q/Fast Decays

- These are the most important for the r process.
- And they are easier to predict. Phase space weights contribution of each state by (ΔE)⁵:

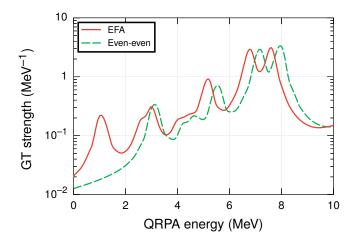


A small error of δ in the energy of a state with low excitation energy (large ΔE) will make little difference in the rate.

Odd Nuclei

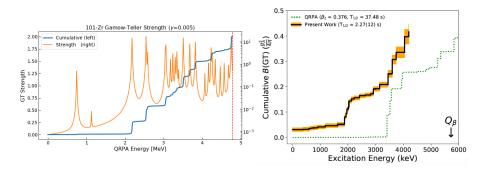
$J \neq 0$, degenerate ground state

Treat degeneracy as ensemble of state and angular-momentumflipped partner (equal filling approximation).



Comparison with Recent Data in ¹⁰¹Zr

Evan Ney just computed this last night.



II. What We'll Do

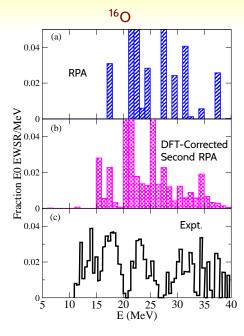
(after computing new rate table)

Improving RPA/QRPA

RPA produces states in intermediate nucleus, but form is restricted to 1p-1h excitations of ground state.

Resonances come out in right place, but there's very little fragmentation.

Second RPA adds 2p-2h states that mix with 1p-1h states, increase fragmentation.



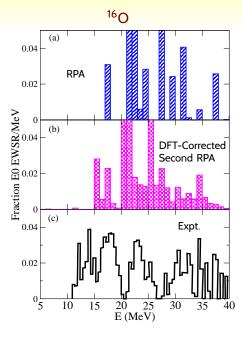
Improving RPA/QRPA

RPA produces states in intermediate nucleus, but form is restricted to 1p-1h excitations of ground state.

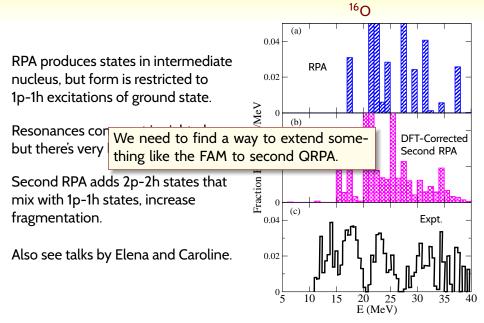
Resonances come out in right place, but there's very little fragmentation.

Second RPA adds 2p-2h states that mix with 1p-1h states, increase fragmentation.

Also see talks by Elena and Caroline.



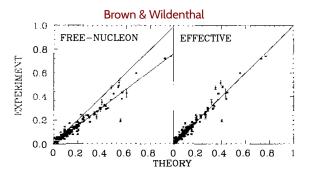
Improving RPA/QRPA



Incorporating Quenching of g_A

Leading order decay operator in Gamow-Teller decay is $g_A \vec{\sigma} \tau_+$.

50-Year-Old Problem: Effective g_A needed in all calculations of shell-model or QRPA type.



Quenching increases with A.

Many suggestions about the cause but, until recently, no consensus.

Axial Weak Current in Chiral Effective Field Theory

 β Decay (simplified) with electron lines omitted

Leading order:

Usual β -decay current.

Axial Weak Current in Chiral Effective Field Theory

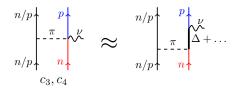
 β Decay (simplified) with electron lines omitted

Leading order:

Usual β -decay current.

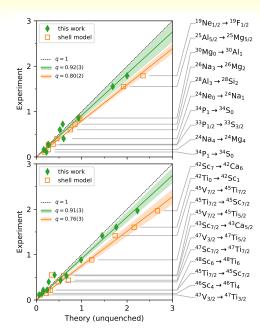
Higher order:

Coefficients same as in three-body interaction:



These are usually neglected.

Quenching in the sd and pf Shells

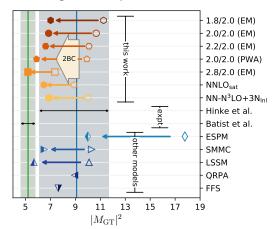


IMSRG calculation, Holt et al, preliminary

Shell model seems to include most correlations. Bulk of quenching comes from two-body current.

... And in ¹⁰⁰Sn

Coupled-Cluster Calculation of β Decay



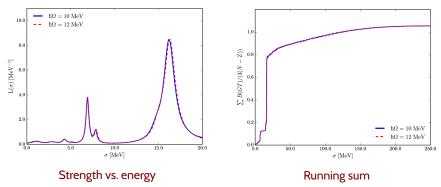
Hagen et al, unpublished

Again, good part of the quenching accounted for by two-body current.

Quenching increases with mass, at least up to Sn.

Spectator nucleons contribute coherently to two-body current.

Gamow-Teller Strength in ¹³²Sn



Coupled-clusters result from G. Hagen

Almost 20% of strength above 30 MeV and 10% above 50 MeV.

Adding the Two-body Currents within FAM

Response constructed from $X(\omega)$ and $Y(\omega)$, essentially the ph and hp pieces of the change $\delta\rho(\omega)$ of the density from mean-field one.

FAM Equations for one-body current operator F, from TDHF:

$$(\varepsilon_m - \varepsilon_i - \omega) X_{mi} + \delta h_{mi} = -F_{mi} (\varepsilon_m - \varepsilon_i + \omega) Y_{mi} + \delta h_{mi} = -F_{mi}^*,$$

where

$$\delta h = \lim_{\eta \to 0} \frac{h \left[\rho_0 + \eta \delta \rho(\omega) \right] - h_0}{\eta} \,.$$

Thus, *h* depends on *X* and *Y* implicitly through $\delta \rho$.

Two-body current operator *G* would be treated the same way as Hamiltonian *H*:

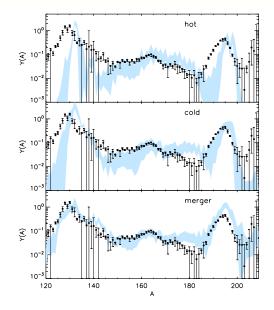
$$\begin{split} H &\longrightarrow h = T + \text{Tr}\left(V\rho_{\mathsf{O}}\right) \\ G &\longrightarrow g = \text{Tr}\left(G\rho_{\mathsf{O}}\right) \,. \end{split}$$

Useful for *r* process, particularly important for electron capture in supernova collapse.

We can already do even nuclei; Evan has derived equations (nontrivial) for odd nuclei.

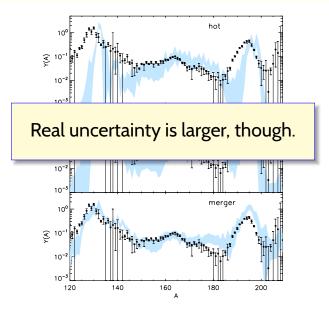
What's at Stake for *r* Process?

Significance of Factor-of-Two Uncertainty



What's at Stake for r Process?

Significance of Factor-of-Two Uncertainty



\begin{Acknowledgments}

Evan, Tom, Mika, Matt, Rebecca, Gail, Carla ...

Thanks!

 $end{Acknowledgments}$

 $\ensuremath{\mathsf{Talk}}\$