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Nuclear Landscape

126

To locate the site(s) of the r
process, need reaction
rates and properties in
very neutron-rich nuclei.

(3 decay particularly important. Increases Z throughout the r
process, and competition with neutron capture during freeze-out
can have large effect on abundances.
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Generic Framework: Skyrme Density-Functional Theory

Zero-range density-dependent effective potential, treated in

mean-field theory. =
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Can be represented as density functional:

8 = Jd3l’ (j{even + j{odd +g—fk|n + g{em)
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:HSkyrme

Hodd has no effect in mean-field description of | = O states (e.g.
ground states), but large effect in 3 decay.

QRPA: time-dependent mean-field theory with small harmonic
perturbation by 3-decay transition operator.

Matrix elements of operator between the initial state and final
excited states at E = hw obtained from response of nucleus
oscillating with frequency w.



. What Weve Done



Fast Skyrme QRPA in Deformed Nuclei

Finite-Amplitude Method (Nakatsukasa et al.)

Strength functions
computed directly, in
orders of magnitude less
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QRPA.




Fast Skyrme QRPA in Deformed Nuclei

Finite-Amplitude Method (Nakatsukasa et al.)

Strength functions
computed directly, in
orders of magnitude less
time than with usual
QRPA.

Beta-decay rates obtained
by integrating strength
with phase-space
weighting function in
contour around excited
states below threshold.




Fit of H,qq and Results

Accuracy of the computed Q values with SkO'
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Lots of Other Fitting Attempts
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Meh...

. Not doing as well as we had hoped.

Is the QRPA near its limits? We think so.
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But We Really Care About High-Q/Fast Decays

» These are the most important for the r process.

» And they are easier to predict. Phase space weights
contribution of each state by (AE)>:
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A small error of & in the energy of a state with low excitation energy
(large AE) will make little difference in the rate.



Odd Nuclei

] # O, degenerate ground state

Treat degeneracy as ensemble of state and angular-momentum-
flipped partner (equal filling approximation).
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Comparison with Recent Data in '0'Zr

Evan Ney just computed this last night.
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II. What Well Do

(after computing new rate table)



Improving RPA/QRPA

RPA produces states in intermediate
nucleus, but form is restricted to
1p-1h excitations of ground state.

Resonances come out in right place,
but there’s very little fragmentation.

Second RPA adds 2p-2h states that
mix with 1p-1h states, increase
fragmentation.
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Improving RPA/QRPA

RPA produces states in intermediate
nucleus, but form is restricted to
1p-1h excitations of ground state.
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We need to find a way to extend some-

but theres very thing like the FAM to second QRPA.

Second RPA adds 2p-2h states that
mix with 1p-1h states, increase
fragmentation.

Also see talks by Elena and Caroline.

Fraction
o

0.04

0.02

o
o
-

DFT-Corrected |
Second RPA

5 10 15 20
E (MeV)

25 30 35 40



Incorporating Quenching of g,

Leading order decay operator in Gamow-Teller decay is g6t

50-Year-Old Problem: Effective g4 needed in all calculations of
shell-model or QRPA type.

Brown & Wildenthal
I R T,
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THEORY
Quenching increases with A.

Many suggestions about the cause but, until recently, no consensus.



Axial Weak Current in Chiral Effective Field Theory

B Decay (simplified) with electron lines omitted
Leading order:
p

Usual 3-decay current.
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Axial Weak Current in Chiral Effective Field Theory

p Decay (simplified) with electron lines omitted

Leading order:

P
1%
Usual 3-decay current.
n
ga
Higher order: Coefficients same as in
' three-body interaction:
n/p p n/p p v n/pt P4 P
ILRK ~ r |A+... ir
Y _C__
n/p n n/p n n/pf nf n
C3,Cy4 C3,Cy4

These are usually neglected.



Quenching in the sd and pf Shells
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...And in 905N

Coupled-Cluster Calculation of 3 Decay

Hagen et al, unpublished

P —D
L =— A

raxe]

g
|—S|epow J%)O"

<

r 1.8/2.0 (EM)
F2.0/2.0 (EM)
F2.2/2.0 (EM)
F2.0/2.0 (PWA)
F2.8/2.0 (EM)
F NNLOgat

F NN-N3LO+3Njq
I Hinke et al.

I Batist et al.

F ESPM

r SMMC

F LSSM

F QRPA

- FFS

9 11 13
|Mgr|?

=
v

=
~

19

Again, good part of the quenching accounted for by two-body current.

Quenching increases with mass, at least up to Sn.

Spectator nucleons contribute coherently to two-body current.



Gamow-Teller Strength in 132Sn

Coupled-clusters result from G. Hagen
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Almost 20% of strength above 30 MeV and 10% above 50 MeV.



Adding the Two-body Currents within FAM

Response constructed from X(w) and Y(w), essentially the ph and
hp pieces of the change dp(w) of the density from mean-field one.

FAM Equations for one-body current operator F, from TDHF:

(em — € — W) Xmj + dhmj = —Fpi
(em — & + W) Ymi + Shmj = —F

where
. hlpo +mdp(w)] —ho
dh = lim .
n—0 n
Thus, h depends on X and Y implicitly through 5p.

Two-body current operator G would be treated the same way as
Hamiltonian H:

H— h=T+Tr(Vpo)
G—g="Tr(Gpo) .




Finite Temperature

Useful for r process, particularly important for electron capture in
supernova collapse.

We can already do even nuclei; Evan has derived equations
(nontrivial) for odd nuclei.



What'’s at Stake for r Process?

Significance of Factor-of-Two Uncertainty
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What'’s at Stake for r Process?

Significance of Factor-of-Two Uncertainty
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Finally...
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