

Mass measurements towards the r-process path at TITAN

Ania Kwiatkowski Research Scientist, TRIUMF Adjunct Assistant Professor, U. Victoria

FRIB & the GW170817 Kilonova 26 July 2018

Two mass spectrometry techniques are used at TITAN.

The Measurement PEnning Trap delivers the best resolving power.

Fast beam preparation and the TOF-ICR technique has led to measurements for half-lives as low as 9 ms (¹¹Li⁺). (PI-ICR forthcoming)

 $2\pi\nu_c = \frac{qe}{a} \cdot B$

Resolving power is boosted by higher charge states.

$$\frac{m}{\Delta m} \propto \frac{\text{qe B } T_{RF} \sqrt{N}}{m}$$

 $N = \text{statistics} \rightarrow \text{limited by production}$

 T_{RF} = measurement time \rightarrow limited by $T_{1/2}$

 $B = \text{magnetic field} \rightarrow \text{limited by technology}$

 $q = \text{charge state } \rightarrow \text{limited by } Z$

(gains also in PI-ICR)

TITAN alone uses highly charged ions for gains in *resolving power*, purification, & more.

Higher charge states resolved isomers in ^{A≈130}In and odd-A ^{≤129}Cd isotopes.

M. Mumpower, et al., PNPP 86 (2016) 86; D. Lascar, et al., PRC, 96 (2017) 044323; C. Babcock, et al. PRC 97 (2018) 024312

Isomers were used to improve the level schemes.

D. Lascar, et al., PRC, 96 (2017) 044323; C. Babcock, et al. PRC 97 (2018) 024312

High resolving power is needed to discern the 100s of keV isomers with ground states.

Penning trap mass spectrometry offers (usually) higher precision than required.

A less demanding technique is the MR-TOF MS.

Multi-Reflection Time-Of-Flight Mass Spectrometers are based on simple kinematics.

Separation increases with flight path → longer path length OR multiple passes on same path

The TITAN MR-TOF was commissioned May 2017.

$$\frac{m}{q} = c(t - t_0)^2$$

c = device dependent t_0 = constant offset \rightarrow mass values can be recalibrated

MR-TOF offers accuracy & requisite precision.

Back to the r-process ...

Surface-ionized contaminants (Rb, Cs, lanthanides) pose a significant challenge.

R. Surman, et al. ICFN5 Proc. (2018), M.P. Reiter, H. Schatz, G. Martinez-Pinedo, et al., in preparation

MR-TOF is well suited for nucleosynthesis studies.

Precisions of δm/m~10⁻⁷

Sensitivity ≥1 ion

→ low production yields

Fast (~3-10 ms)

- → short half-lives
- → short experiments

Broadband

- → simultaneous measurements
- → high contaminant rates

Access to, quality of, & reach of beam are critical.

Fission produces cleaner n-rich RIB.

ISAC + ARIEL = 3 RIBs = 3 experiments

- AETE: ≤100 kW, 35 MeV, electrons
- APTW / ITE / ITW: ≤50 kW, 500 MeV, ≤100 μA protons
- 2 low energy beams + 1 higher-energy beam
- > 9000 hours of RIB per year

science interwoven with technical milestones

- 2020 beam to βNMR
- 2021 photo-fission beam to experiments
- 2022 ISOL beam to experiments

TITAN's mass measurements

- Precision (typical δm ≤ 10s keV)
- Single-ion sensitivity (MR-TOF)
- Broadband for contaminants (MR-TOF)
- High resolving powers (Penning trap + highly charged ions)

approach the r-process,

- ~100Rb/Sr
- <130Cd/In g.s. and isomers
- ~85Ga

& will have better access with ARIEL.

- 2 spallation + 1 fission RIB
- >9000 RIB hours/y
- Increasing use of MR-TOF

UNIVERSITY º Manitoba

COLORADOSCHOOLOFMINES

