

Surrogate neutron capture reaction prospects for r-process nuclei

Jolie A. Cizewski

Rutgers University

FRIB and the GW170817 Kilonova

Facility for Rare Isotope Beams, 23-27 July 2018

Surrogate neutron capture reaction prospects for r-process nuclei

J.A.C.⁽¹⁾, Brett Manning⁽¹⁾, Andrew Ratkiewicz^(1,2), Jutta Escher⁽²⁾, Jason Burke⁽²⁾, Alex Lepailleur⁽¹⁾, Goran Arbanas⁽³⁾, Gregory Potel⁽⁴⁾, Steve Pain⁽³⁾, David Walter⁽¹⁾

(1) Rutgers University
(2) Lawrence Livermore National Laboratory
(3) Oak Ridge National Laboratory
(4) Michigan State University & FRIB

and the ORRUBA, STAR-LiTeR and GODDESS collaborations

Funded in part by the U.S. Department of Energy National Nuclear Security Administration & Office of Nuclear Physics and the National Science Foundation

RUTGERS Understanding r-process nucleosynthesis

 (n,γ) rates \leftarrow reaction exp & theory studies

r-process nucleosynthesis

r-process nucleosynthesis

Near shell closure & waiting points

neutron capture dominated by direct capture

Tin Z=50 iso	topes n-star	merger
--------------	--------------	--------

wer, et al. Pf	PNP 2016
127	1.77
128	1.21
129	3.55
130	4.47
131	3.28
132	1.92
	127 128 129 130 131

Inform by measuring neutron transfer e.g., (d,p) with n-rich RIBs

Neutron transfer (d,p) Reactions

in Inverse Kinematics

- ■Unfavorable kinematics → Reduced Q-value Resolution
- Rare Ion Beams (RIBs) are difficult and expensive to produce

Applicable to all isotopes which can be made into a beam

RUTGERS ¹³²Sn(d,p): N=83 single neutron states

Identified $2f_{7/2}$, $3p_{3/2}$, $(3p_{1/2})$, $2f_{5/2}$ neutron strength in 133 Sn

K.L. Jones et al. Nature, **465**,454 (2010) Phys. Rev. C **84**, 034601 (2011)

		, ,		$oldsymbol{\mathfrak{I}}_{li}$
E _x (keV)	J^π	Config	SF (DWBA)	SF (FR-ADWA)
0	7/2 ⁻	2f _{7/2}	0.86(14)	1.00(8)
854	3/2-	3p _{3/2}	0.92(14)	0.92(7)
1363(31)	(1/2 ⁻)	3p _{1/2}	1.1(3)	1.2(2)
2005	(5/2 ⁻)	2f _{5/2}	1.1(2)	1.2(3)

CENTER OF EXCELLENCE FOR RADIOACTIVE ION BEAM STUDIES FOR STEWARDSHIP SCIENCE

TRIB IA JULY 2010

RUTGERS Direct-semi-direct neutron capture calculations

Direct semi-direct direct capture with CUPIDO

- Incident n channel: Koning Delaroche potential
- Bound state: Bear Hodgson potential
- Semi-direct capture via GDR
 - Add GDR to s.p. EM operator
- Used measured SF and E_x to constrain
- Uncertainties ≈ 20%

	30 keV σ(n,γ) (μb)
¹³² Sn(d,p)	134(17)
¹³⁰ Sn(d,p)	90(15)
¹²⁸ Sn(d,p)	51(8)
¹²⁶ Sn(d,p)	59(7)
¹²⁴ Sn(d,p)	56(6)

DSD: B. Manning, G. Arbanas et al. submitted to PRL

132,130,128,126,124Sn DSD (n,γ)

	30 keV σ(n,γ) (μb)
¹³² Sn(d,p)	134(17)
¹³⁰ Sn(d,p)	90(15)
¹²⁸ Sn(d,p)	51(8)
¹²⁶ Sn(d,p)	59(7)
¹²⁴ Sn(d,p)	56(6)

$Sn(n,\gamma)$ vs A

Theory: Chiba, et al. PRC **77**, 015809 (2008) DSD from exp: G. Arbanas, B. Manning

GERS

Surrogate reaction concept &

Hauser-Feshbach formalism

nucleus formation and decay for every spin and parity:

$$\overline{\sigma_{n\gamma}(E_n) = \sum_{I, \pi} \sigma_n^{CN}(E_x, J, \pi) G_{\gamma}^{CN}(E_x, J, \pi)}$$

Surrogate particle-gamma coincidence can be written as product of compound nucleus formation and decay for every spin and parity:

$$P_{p\gamma}(E_x,\theta) = \sum_{J,\pi} F_{dp}^{CN}(E_x,J,\pi,\theta) G_{\gamma}^{CN}(E_x,J,\pi)$$

Good candidate for (n,γ) surrogate with beams

- Relatively good match with spin distribution in (n,γ) which is dominated by $\ell=0$
- Reaction predominantly one-step transfer of j=ℓ±1/2 neutron
- "Easy" to produce CD₂ targets
- "Lower" beam energies (than heavier targets) to get above neutron separation energy

Forming compound nucleus in (d,p)

$$P_{p\gamma}(E_{x},\theta) = \sum_{J,\pi} F_{dp}^{CN}(E_{x},J,\pi,\theta) G_{\gamma}^{CN}(E_{x},J,\pi)$$

Neutron transfer (d,p) to unbound states,

non-elastic breakup and surrogate for (n,γ)

Two-step process

d breakup; B.E. = 2.2 MeV

Gregory Potel et al. PRC 92, 034611(2015) ⇒ path to CN formation

Neutron transfer (d,p) to unbound states,

non-elastic breakup and surrogate for (n,γ)

Two-step process

- d breakup; B.E. = 2.2 MeV
- n propagation
 - Elastic breakup
 - Non-elastic breakup ⇒
 CN and surrogate (n,γ)
 - Predicts J^π transfer

Gregory Potel et al. PRC 92, 034611(2015) ⇒ path to CN formation

Surrogate (n,γ) with $(d,p\gamma)$

(d,p) reaction forms compound nucleus Need to measure $P(d,p_{\gamma})$ Need to deduce G^{CN} by fit to $P(d,p_{\gamma})$ accounting for F^{CN}

$$P_{p\gamma}(E_x,\theta) = \sum_{J,\pi} F_{dp}^{CN}(E_x,J,\pi,\theta) G_{\gamma}^{CN}(E_x,J,\pi)$$

Validate with 95 Mo(d,p $_{\gamma}$) 96 Mo reaction $\sigma(n,\gamma)$ was measured and evaluated

⁹⁵Mo: Known (n,γ) and ⁹⁶Mo levels

de L. Musgrove, et al., NPA 270, 109 (1976)

96Mo level scheme778 keV collecting transition

Gamma-ray Emission Probability

Gamma-ray Emission Probability

Surrogate (n,γ) validated with 95 Mo $(d,p\gamma)$

Measured $P(d,p\gamma)$

Calculate how (d,p) forms compound nucleus (E_x ,J, π)

 \triangleright Deduce G^{CN} by fit to P(d,p γ) accounting for F^{CN}

$$P_{p\gamma}(E_x,\theta) = \sum_{J,\pi} F_{dp}^{CN}(E_x,J,\pi,\theta) G_{\gamma}^{CN}(E_x,J,\pi)$$

RUTGERS Potel model for d breakup and ℓ distributions

RUTGERS Potel model for d breakup and J^π distributions

GERS

⁹⁵Mo(d,p γ): Input for $G^{CN}(E_{x},J,\pi)$

Surrogate (d,p_γ) data

⁹⁶Mo spin distribution from Potel

G. Potel et al, PRC 92, 034611(2015)

HF calculations (Jutta Escher)

- F^{CN} from Potel
- Bayesian fit to observed $P(d,p\gamma)$
 - Simple level density: Gilbert & Cameron
 - No norm to n resonance spacings
 - Simple Lorentzian γ strength function
 - No <Γ(γ)>
- $G^{CN}(E_x,J,\pi)$

FRIB TA July 2018

Calculating $\sigma(n,\gamma)$

$$P_{p\gamma}(E_x,\theta) = \sum_{J,\pi} F_{dp}^{CN}(E_x,J,\pi,\theta) G_{\gamma}^{CN}(E_x,J,\pi)$$

$$\sigma_{n\gamma}(E_n) = \sum_{J,\pi} \sigma_n^{CN}(E_x,J,\pi) G_{\gamma}^{CN}(E_x,J,\pi)$$

- Deduce G^{CN}(E_x,J,π) from fit to data
- Calculate σ^{CN} w/ Koning-Delaroche optical potentials
- Deduce σ(n,γ) vs E_x

⁹⁵Mo(d,pγ) validated (n,γ) surrogate

FRIB TA July 2018

A. Ratkiewicz et al., submitted to PRL

 $\sigma_{n\gamma}(E_n) = \sum_{J,\pi} \sigma_n^{CN}(E_x, J, \pi) G_{\gamma}^{CN}(E_x, J, \pi)^{s}$

Measuring (d,pγ) with radioactive beams

Coupling charged particle & gamma detector arrays

GODDESS: Gammasphere ORRUBA

Dual Detectors for Experimental Structure Studies

GODDESS: Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies

Oak Ridge Rutgers University Barrel Array + endcaps

RUTGERS 134Xe(d,pγ) with GODDESS: levels+SF

N=80 isotone

A. Lepailleur, private communication

RUTGERS 134Xe(d,pγ) with GODDESS: levels+SF

10³

10²

10

N=80 isotone

¹³⁵Xe E_x spectrum

Red: QQQ5 (large θ)

Low- ℓ transfer important for DSD

Blue: SX3 (90°<θ<135°)

Rutgers 134Xe(d,pγ) with GODDESS: levels+SF

RUTGERS 134Xe(d,pγ) with GODDESS: levels+SF

RUTGERS 134Xe(d,pγ) with GODDESS: levels+SF

RUTGERS Prepared to measure surrogate (n,γ) w/ RIBs & $(d,p\gamma)$

Goal: ≈¹³²Sn isotopes important for n-star mergers Will have to wait for FRIB

Ba (n,γ) rates from [Mum16]

Would be first surrogate (n,γ) on fission fragment to constrain (n,γ) in this region

What can we do "now"?

- CARIBU ²⁵²Cf fragment beams
- Approved to measure
 ¹⁴³Ba(d,pγ) w/ GODDESS

RUTGERS Prepared to measure surrogate (n,γ) w/ RIBs & $(d,p\gamma)$

Goal: ≈¹³²Sn isotopes important for n-star mergers

Will have to wait for FRIB

What can we do "now"?

- CARIBU ²⁵²Cf fragment beams
- Approved to measure
 ¹⁴³Ba(d,pγ) w/ GODDESS
- NSCL ≈80 fast beams
- Approved to measure ⁸⁰Ge(d,p_γ) w/ ORRUBA+HAGRiD

Surman et al. AIP Adv. **4**, 041008 (2014)

Rutgers

Thank you for your attention

- Understanding abundances from NSM r process is sensitive to (n,γ) rates, especially near shell closures, e.g., ¹³⁰Sn, and weakly bound nuclei with low level density
 - Need neutron transfer (d,p) to inform direct-semi-direct capture
- Unknown competition between DSD and CN (n,γ)
 - Need validated surrogate for (n,γ)
- Demonstrated that $(d,p\gamma)$ is valid surrogate for (n,γ)
- Demonstrated ability to measure (d,p) protons in coincidence

with gamma rays

- Near term
 - 143Ba(d,pγ)
 - ⁸⁰Ge(d,pγ)
- Goal: FRIB (d,pγ)
 e.g., with ¹³⁰Sn beams

EXTRA SLIDES

Fitting P(d,pγ) with FCN from Potel model

Hauser Feshbach code STAPRE (modified)

- Level Density
 - Use known discrete levels
 - Gilbert-Cameron level density
 - Fermi Gas model matched to Constant Temperature
- Gamma-ray strength function "usual" forms
 - E1, M1, E2, M2
 - E1 strength: modified, energy- and temperature-dependent Lorentzian
- Bayes' method to obtain parameter constraints
- Monte-Carlo sampling of parameters to calculate cross sections

