Surrogate neutron capture reaction prospects for r-process nuclei Jolie A. Cizewski Rutgers University FRIB and the GW170817 Kilonova Facility for Rare Isotope Beams, 23-27 July 2018 ## Surrogate neutron capture reaction prospects for r-process nuclei J.A.C.⁽¹⁾, Brett Manning⁽¹⁾, Andrew Ratkiewicz^(1,2), Jutta Escher⁽²⁾, Jason Burke⁽²⁾, Alex Lepailleur⁽¹⁾, Goran Arbanas⁽³⁾, Gregory Potel⁽⁴⁾, Steve Pain⁽³⁾, David Walter⁽¹⁾ (1) Rutgers University (2) Lawrence Livermore National Laboratory (3) Oak Ridge National Laboratory (4) Michigan State University & FRIB ## and the ORRUBA, STAR-LiTeR and GODDESS collaborations Funded in part by the U.S. Department of Energy National Nuclear Security Administration & Office of Nuclear Physics and the National Science Foundation ## RUTGERS Understanding r-process nucleosynthesis (n,γ) rates \leftarrow reaction exp & theory studies #### r-process nucleosynthesis #### r-process nucleosynthesis #### Near shell closure & waiting points neutron capture dominated by direct capture | Tin Z=50 iso | topes n-star | merger | |--------------|--------------|--------| |--------------|--------------|--------| | wer, et al. Pf | PNP 2016 | |----------------|---------------------------------| | 127 | 1.77 | | 128 | 1.21 | | 129 | 3.55 | | 130 | 4.47 | | 131 | 3.28 | | 132 | 1.92 | | | 127
128
129
130
131 | Inform by measuring neutron transfer e.g., (d,p) with n-rich RIBs #### Neutron transfer (d,p) Reactions in Inverse Kinematics - ■Unfavorable kinematics → Reduced Q-value Resolution - Rare Ion Beams (RIBs) are difficult and expensive to produce Applicable to all isotopes which can be made into a beam ## RUTGERS ¹³²Sn(d,p): N=83 single neutron states Identified $2f_{7/2}$, $3p_{3/2}$, $(3p_{1/2})$, $2f_{5/2}$ neutron strength in 133 Sn K.L. Jones et al. Nature, **465**,454 (2010) Phys. Rev. C **84**, 034601 (2011) | | | , , | | $oldsymbol{\mathfrak{I}}_{li}$ | |----------------------|---------------------|-------------------|--------------|--------------------------------| | E _x (keV) | J^π | Config | SF
(DWBA) | SF
(FR-ADWA) | | 0 | 7/2 ⁻ | 2f _{7/2} | 0.86(14) | 1.00(8) | | 854 | 3/2- | 3p _{3/2} | 0.92(14) | 0.92(7) | | 1363(31) | (1/2 ⁻) | 3p _{1/2} | 1.1(3) | 1.2(2) | | 2005 | (5/2 ⁻) | 2f _{5/2} | 1.1(2) | 1.2(3) | CENTER OF EXCELLENCE FOR RADIOACTIVE ION BEAM STUDIES FOR STEWARDSHIP SCIENCE TRIB IA JULY 2010 #### RUTGERS Direct-semi-direct neutron capture calculations #### Direct semi-direct direct capture with CUPIDO - Incident n channel: Koning Delaroche potential - Bound state: Bear Hodgson potential - Semi-direct capture via GDR - Add GDR to s.p. EM operator - Used measured SF and E_x to constrain - Uncertainties ≈ 20% | | 30 keV
σ(n,γ) (μb) | |------------------------|-----------------------| | ¹³² Sn(d,p) | 134(17) | | ¹³⁰ Sn(d,p) | 90(15) | | ¹²⁸ Sn(d,p) | 51(8) | | ¹²⁶ Sn(d,p) | 59(7) | | ¹²⁴ Sn(d,p) | 56(6) | DSD: B. Manning, G. Arbanas et al. submitted to PRL ## 132,130,128,126,124Sn DSD (n,γ) | | 30 keV
σ(n,γ) (μb) | |------------------------|-----------------------| | ¹³² Sn(d,p) | 134(17) | | ¹³⁰ Sn(d,p) | 90(15) | | ¹²⁸ Sn(d,p) | 51(8) | | ¹²⁶ Sn(d,p) | 59(7) | | ¹²⁴ Sn(d,p) | 56(6) | #### $Sn(n,\gamma)$ vs A Theory: Chiba, et al. PRC **77**, 015809 (2008) DSD from exp: G. Arbanas, B. Manning #### GERS #### Surrogate reaction concept & #### Hauser-Feshbach formalism nucleus formation and decay for every spin and parity: $$\overline{\sigma_{n\gamma}(E_n) = \sum_{I, \pi} \sigma_n^{CN}(E_x, J, \pi) G_{\gamma}^{CN}(E_x, J, \pi)}$$ Surrogate particle-gamma coincidence can be written as product of compound nucleus formation and decay for every spin and parity: $$P_{p\gamma}(E_x,\theta) = \sum_{J,\pi} F_{dp}^{CN}(E_x,J,\pi,\theta) G_{\gamma}^{CN}(E_x,J,\pi)$$ #### Good candidate for (n,γ) surrogate with beams - Relatively good match with spin distribution in (n,γ) which is dominated by $\ell=0$ - Reaction predominantly one-step transfer of j=ℓ±1/2 neutron - "Easy" to produce CD₂ targets - "Lower" beam energies (than heavier targets) to get above neutron separation energy ## Forming compound nucleus in (d,p) $$P_{p\gamma}(E_{x},\theta) = \sum_{J,\pi} F_{dp}^{CN}(E_{x},J,\pi,\theta) G_{\gamma}^{CN}(E_{x},J,\pi)$$ #### Neutron transfer (d,p) to unbound states, non-elastic breakup and surrogate for (n,γ) #### Two-step process d breakup; B.E. = 2.2 MeV Gregory Potel et al. PRC 92, 034611(2015) ⇒ path to CN formation #### Neutron transfer (d,p) to unbound states, non-elastic breakup and surrogate for (n,γ) #### Two-step process - d breakup; B.E. = 2.2 MeV - n propagation - Elastic breakup - Non-elastic breakup ⇒ CN and surrogate (n,γ) - Predicts J^π transfer Gregory Potel et al. PRC 92, 034611(2015) ⇒ path to CN formation ## Surrogate (n,γ) with $(d,p\gamma)$ (d,p) reaction forms compound nucleus Need to measure $P(d,p_{\gamma})$ Need to deduce G^{CN} by fit to $P(d,p_{\gamma})$ accounting for F^{CN} $$P_{p\gamma}(E_x,\theta) = \sum_{J,\pi} F_{dp}^{CN}(E_x,J,\pi,\theta) G_{\gamma}^{CN}(E_x,J,\pi)$$ Validate with 95 Mo(d,p $_{\gamma}$) 96 Mo reaction $\sigma(n,\gamma)$ was measured and evaluated ### ⁹⁵Mo: Known (n,γ) and ⁹⁶Mo levels de L. Musgrove, et al., NPA 270, 109 (1976) 96Mo level scheme778 keV collecting transition #### Gamma-ray Emission Probability #### Gamma-ray Emission Probability ### Surrogate (n,γ) validated with 95 Mo $(d,p\gamma)$ Measured $P(d,p\gamma)$ Calculate how (d,p) forms compound nucleus (E_x ,J, π) \triangleright Deduce G^{CN} by fit to P(d,p γ) accounting for F^{CN} $$P_{p\gamma}(E_x,\theta) = \sum_{J,\pi} F_{dp}^{CN}(E_x,J,\pi,\theta) G_{\gamma}^{CN}(E_x,J,\pi)$$ #### RUTGERS Potel model for d breakup and ℓ distributions #### RUTGERS Potel model for d breakup and J^π distributions #### GERS ### ⁹⁵Mo(d,p γ): Input for $G^{CN}(E_{x},J,\pi)$ Surrogate (d,p_γ) data ⁹⁶Mo spin distribution from Potel G. Potel et al, PRC 92, 034611(2015) HF calculations (Jutta Escher) - F^{CN} from Potel - Bayesian fit to observed $P(d,p\gamma)$ - Simple level density: Gilbert & Cameron - No norm to n resonance spacings - Simple Lorentzian γ strength function - No <Γ(γ)> - $G^{CN}(E_x,J,\pi)$ FRIB TA July 2018 ## Calculating $\sigma(n,\gamma)$ $$P_{p\gamma}(E_x,\theta) = \sum_{J,\pi} F_{dp}^{CN}(E_x,J,\pi,\theta) G_{\gamma}^{CN}(E_x,J,\pi)$$ $$\sigma_{n\gamma}(E_n) = \sum_{J,\pi} \sigma_n^{CN}(E_x,J,\pi) G_{\gamma}^{CN}(E_x,J,\pi)$$ - Deduce G^{CN}(E_x,J,π) from fit to data - Calculate σ^{CN} w/ Koning-Delaroche optical potentials - Deduce σ(n,γ) vs E_x ## ⁹⁵Mo(d,pγ) validated (n,γ) surrogate FRIB TA July 2018 A. Ratkiewicz et al., submitted to PRL $\sigma_{n\gamma}(E_n) = \sum_{J,\pi} \sigma_n^{CN}(E_x, J, \pi) G_{\gamma}^{CN}(E_x, J, \pi)^{s}$ #### Measuring (d,pγ) with radioactive beams Coupling charged particle & gamma detector arrays GODDESS: Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies ## GODDESS: Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies Oak Ridge Rutgers University Barrel Array + endcaps ## RUTGERS 134Xe(d,pγ) with GODDESS: levels+SF N=80 isotone A. Lepailleur, private communication ## RUTGERS 134Xe(d,pγ) with GODDESS: levels+SF 10³ 10² 10 #### N=80 isotone ¹³⁵Xe E_x spectrum Red: QQQ5 (large θ) Low- ℓ transfer important for DSD Blue: SX3 (90°<θ<135°) ## Rutgers 134Xe(d,pγ) with GODDESS: levels+SF ## RUTGERS 134Xe(d,pγ) with GODDESS: levels+SF ## RUTGERS 134Xe(d,pγ) with GODDESS: levels+SF #### RUTGERS Prepared to measure surrogate (n,γ) w/ RIBs & $(d,p\gamma)$ Goal: ≈¹³²Sn isotopes important for n-star mergers Will have to wait for FRIB Ba (n,γ) rates from [Mum16] Would be first surrogate (n,γ) on fission fragment to constrain (n,γ) in this region What can we do "now"? - CARIBU ²⁵²Cf fragment beams - Approved to measure ¹⁴³Ba(d,pγ) w/ GODDESS #### RUTGERS Prepared to measure surrogate (n,γ) w/ RIBs & $(d,p\gamma)$ Goal: ≈¹³²Sn isotopes important for n-star mergers Will have to wait for FRIB What can we do "now"? - CARIBU ²⁵²Cf fragment beams - Approved to measure ¹⁴³Ba(d,pγ) w/ GODDESS - NSCL ≈80 fast beams - Approved to measure ⁸⁰Ge(d,p_γ) w/ ORRUBA+HAGRiD Surman et al. AIP Adv. **4**, 041008 (2014) #### Rutgers ## Thank you for your attention - Understanding abundances from NSM r process is sensitive to (n,γ) rates, especially near shell closures, e.g., ¹³⁰Sn, and weakly bound nuclei with low level density - Need neutron transfer (d,p) to inform direct-semi-direct capture - Unknown competition between DSD and CN (n,γ) - Need validated surrogate for (n,γ) - Demonstrated that $(d,p\gamma)$ is valid surrogate for (n,γ) - Demonstrated ability to measure (d,p) protons in coincidence with gamma rays - Near term - 143Ba(d,pγ) - ⁸⁰Ge(d,pγ) - Goal: FRIB (d,pγ) e.g., with ¹³⁰Sn beams ## **EXTRA SLIDES** #### Fitting P(d,pγ) with FCN from Potel model #### Hauser Feshbach code STAPRE (modified) - Level Density - Use known discrete levels - Gilbert-Cameron level density - Fermi Gas model matched to Constant Temperature - Gamma-ray strength function "usual" forms - E1, M1, E2, M2 - E1 strength: modified, energy- and temperature-dependent Lorentzian - Bayes' method to obtain parameter constraints - Monte-Carlo sampling of parameters to calculate cross sections