Neutral Current Weak Form Factors & Neutrino Scattering

Raza Sabbir Sufian

USQCD All Hands' Meeting 2018

Neutrino-Nucleon Neutral Current Elastic Scattering

$$\begin{array}{cccc} \hline \nu + p & \rightarrow & \nu + p \\ \hline \bar{\nu} + p & \rightarrow & \bar{\nu} + p \end{array}$$

Matrix element in V-A structure of leptonic current

$$M = \frac{i}{2\sqrt{2}} G_F \underbrace{\bar{\nu}(q_2)\gamma_{\mu}(1-\gamma_5)\nu(q_1)}_{\text{leptonic current}} \underbrace{\langle N(p_2)|J_Z^{\mu}|N(p_1)\rangle}_{\text{hadronic current}}.$$

$$\langle N(p_2)|J_Z^{\mu}|N(p_1)\rangle = \bar{u}(p_2)[F_1^Z(Q^2) + F_2^Z(Q^2)\frac{i\sigma^{\mu\nu}q_{\nu}}{2M_N} + F_A^Z(Q^2)\gamma^{\mu}\gamma_5]u(p_1)$$

(Anti)Neutrino-Nucleon Scattering Differential Cross Section

$$\frac{d\sigma}{dQ^{2}} = \frac{G_{F}^{2} Q^{2}}{2\pi E_{\nu}^{2}} (A \pm BW + CW^{2})$$

$$W = 4(E_{\nu}/M_p - \tau)$$

$$A = \frac{1}{4} \{ (G_A^Z)^2 (1+\tau) - [(F_1^Z)^2 - \tau (F_2^Z)^2] (1-\tau) + 4\tau F_1^Z F_2^Z \}$$

$$B = -\frac{1}{4}G_A^Z(F_1^Z + F_2^Z),$$

Neutral Weak Dirac & Pauli FFs

$$B = -\frac{1}{4}G_A^Z(F_1^Z + F_2^Z),$$

$$C = \frac{1}{64\tau}[(G_A^Z)^2 + (F_1^Z)^2 + \tau(F_2^Z)^2]$$

Weak axial FF

Calculation of $F_1{}^Z$ and $F_2{}^Z$

$$F_{1,2}^{Z,p} = \left(\frac{1}{2} - \sin^2 \theta_W\right) \left(F_{1,2}^p(Q^2) - F_{1,2}^n(Q^2)\right) - \sin^2 \theta_W \left(F_{1,2}^p + F_{1,2}^n\right) - \frac{F_{1,2}^s}{2}$$

Nucleon EMFF from Model Independent z-expansion

PL B 777 (2018) 8-15

Ye, Arrington, Hill, Lee

Strange EMFF from Lattice QCD

PRL 118, 042001 (2017)

RSS, Yang, Alexandru, Draper, Liang, Liu

Physical point
4 lattice spacings
3 volumes

Inputs for Previous Neutral Weak EMFFs

Nucleon EMFF (total)

PRD 95, 014011(2017) RSS, de Teramond, Brodsky, Dosch, Deur

PRL 2018 de Teramond, Liu, RSS, Brodsky, Dosch, Deur

Calculation of Neutral Weak EMFFs

$$G_{E,M}^{Z,p(n)}(Q^2) = \frac{1}{4} \left[(1 - 4\sin^2\theta_W)(1 + R_V^{p(n)})G_{E,M}^{\gamma,p(n)}(Q^2) - (1 + R_V^{n(p)})G_{E,M}^{\gamma,n(p)}(Q^2) - G_{E,M}^s(Q^2) \right]$$

Radiative corrections for e-p scattering

Determination of Neutral Current Weak Axial FF

*Use MiniBooNE data $(0.27 < Q^2 < 0.65 \text{ GeV}^2)$

Reason 1: Uncertainty in $G^{s}_{E,M}$ becomes very large and values consistent with zero

Reason 2: Nuclear effect can be large for at low Q²

Determination of Neutral Current Weak Axial FF

$$G^{Z}_{A}(0) = -0.751 (56)$$

 $M_{dipole} = 0.95(6) \text{ GeV}$

In preparation with Keh-Fei Liu & David Richards

Impact of Lattice QCD Strange EMFF

Possibility: Since strange quark contribution is small set $G_{E,M}^s = 0$ (??)

Reconstruction of Differential Cross Sections

Nuclear effects
Pauli blocking &
nuclear shadowing
at Q² < 0.15 GeV²

BNL E734 data was NOT used in the analysis

Estimate of GsA(0)

This Calculation

$$G_A^Z = \frac{1}{2}(-G_A^{\text{CC}} + G_A^s)$$

$$G_A^Z(0) = -0.751(56)$$

$$G_A^{CC}(0) = 1.2723(23)$$

$$G_A^s(0) = -0.23(11)$$

Other Calculations

MiniBooNE, PRD 82 (2010)

$$G_A^s(0) = 0.08(26)$$

BNL E734, PRC 48 (1993)

$$G_A^s(0) = -0.21(10)$$

From Jeremy Green's Talk

Summary

Precise estimate of NC weak axial form factor GZA

Strange quark contribution cannot be ignored

Lattice QCD calculation of G^s_A in the continuum and infinite volume limit with controlled systematic uncertainties required

An Example: LQCD Constraint on Models

Many models of meson-baryon fluctuations to study $s(x)-\overline{s}(x)$ asymmetry

Pate, et al EPJ Web Conf. 66 (2014) 06018

Weak Axial FF form e-p scattering

$$A_{PV}^{p} = -\frac{G_{F}Q^{2}}{4\sqrt{2}\pi\alpha} \frac{1}{[\epsilon(G_{E}^{p})^{2} + \tau(G_{M}^{p})^{2}]} \times \{(\epsilon(G_{E}^{p})^{2} + \tau(G_{M}^{p})^{2})(1 - 4\sin^{2}\theta_{W})(1 + R_{V}^{p}) - (\epsilon G_{E}^{p}G_{E}^{n} + \tau G_{M}^{p}G_{M}^{n})(1 + R_{V}^{n}) - (\epsilon G_{E}^{p}G_{E}^{s} + \tau G_{M}^{p}G_{M}^{s})(1 + R_{V}^{(0)}) - \epsilon'(1 - 4\sin^{2}\theta_{W})G_{M}^{p}G_{A}^{e}\},$$
with
$$\tau = \frac{Q^{2}}{4M_{p}^{2}}, \quad \epsilon = \left(1 + 2(1 + \tau)\tan^{2}\frac{\theta}{2}\right)^{-1},$$

$$\epsilon' = \sqrt{\tau(1 + \tau)(1 - \epsilon^{2})},$$

			(2)
	$R_A^{T=1}$	$R_A^{T=0}$	$R_A^{(0)}$
one-quark	-0.172	-0.253	-0.551
many-quark	-0.086(0.34)	0.014(0.19)	N/A
total	-0.258(0.34)	-0.239(0.20)	-0.55(0.55)

$$\nu_{\mu} + n \to \mu^{-} + p$$
 , $\bar{\nu}_{\mu} + p \to \mu^{+} + n$, $\nu_{e} + n \to e^{-} + p$, $\bar{\nu}_{e} + p \to e^{+} + n$.

Particle	Lifetime (ns)	Decay mode	Branching ratio (%)
π^+	26.03	$\mu^+ + \nu_\mu$	99.9877
		$e^+ + \nu_e$	0.0123
K^+	12.385	$\begin{array}{ c c c c c c c } \mu^{+} + \nu_{\mu} \\ \pi^{0} + e^{+} + \nu_{e} \end{array}$	63.44
			4.98
		$\pi^0 + \mu^+ + \nu_\mu$	3.32
K_L^0	51.6	$\pi^- + e^+ + \nu_e$	20.333
		$\pi^+ + e^- + \overline{\nu}_e$	20.197
		$\pi^{-} + \mu^{+} + \nu_{\mu}$	13.551
		$\pi^+ + \mu^- + \overline{\nu}_{\mu}$	13.469
μ^+	2197.03	$e^+ + \nu_e + \overline{\nu}_{\mu}$	100.0

F Sanchez NI IINT 07 May 31t 2007