g_A

Boram Yoon
Los Alamos National Laboratory

USQCD AHM, Fermilab, April 20-21, 2018
Current Status - g_A

- $N_f = 2+1+1$
 - PNDME ’18 (Preliminary)
 - CalLat ’17B (Preliminary)
 - CalLat ’17A
 - PNDME ’16

- $N_f = 2+1$
 - LHPC ’14
 - LHPC ’10
 - RBC/UKQCD ’08
 - Lin/Orginos ’07

- $N_f = 2$
 - Mainz ’17
 - ETMC ’17
 - ETMC ’15
 - RQCD ’14
 - QCDSF/UKQCD ’14
 - Mainz ’12

- Expt
 - PDG 1.2723(23)
• Lattice
 – TMF, $N_f=2$
 – $a = 0.094$ fm
 – $m_\pi = 130$ MeV
 – $m_\pi L = 3.0$

• Measurement/Analysis
 – APE-smearred links
 – Fixed-sink method
 – *Plateau method* at $t_{sep} = 1.31$ fm
 (compared with Two-state fit)
 – NPR
 – Single lattice spacing at physical pion mass
Mainz ’17 (arXiv:1705.06186)

• Lattices
 – CLS, $N_f=2$
 – $a = 0.050, 0.063$ and 0.079 fm
 – $m_\pi = 190 – 473$ MeV, $m_\pi L \gtrsim 4$

• Measurement/Analysis
 – APE-smeared links
 – Fixed-sink method
 – O(a)-improved axial current
 – *Two-state fit* with assumption of the Nππ dominant excited-state (compared with summation method)
 – NPR
 – No a-dependence, central value from linear fit in m_π^2 for $m_\pi < 330$ MeV
• Lattices
 – DWF-on-HISQ, $N_f=2+1+1$
 – $a = 0.09, 0.12$ and 0.15 fm
 – $m_{\pi} = 130 - 400$ MeV

• Measurement/Analysis
 – Gradient-flowed links
 – Feynman-Hellmann-inspired current-at-all-timeslices method
 – Summation method + two-state fit
 – g_A/g_V with $Z_A/Z_V = 1$, $Z_V g_V = 1$
 – (a, m_{π}, L) extrapolation:

 $$ g_A = g_0 - \epsilon_\pi^2 \left[(g_0 + 2 g_0^3) \ln \epsilon_\pi^2 - c_2 \right] + g_0 c_3 \epsilon_\pi^3
 + a_2 \epsilon_a^2 + c_4 \epsilon_\pi^4 + b_4 \epsilon_a^2 \epsilon_\pi^2 + a_4 \epsilon_a^4
 + (8/3) \epsilon_\pi^2 \left[g_0^3 F_1(m_{\pi} L) + g_0 F_3(m_{\pi} L) \right] $$

CalLat ’17 (EPJ WoC 175, 01008, 2018)
• **Lattices**
 – Clover-on-HISQ, $N_f = 2+1+1$
 – $a = 0.06, 0.09, 0.12$ and 0.15 fm
 – $m_\pi = 130 - 320$ MeV

• **Measurement/Analysis**
 – HYP-smeared links
 – Fixed-sink-method
 – 3-state fit for excited state
 – NPR
 – (a, m_π, L) extrapolation:

 \[
 g_A = c_1 + c_2 a \\
 + c_3 m_\pi^2 + c_3' m_\pi^2 \ln \left(\frac{m_\pi}{m_\rho} \right)^2 \\
 + c_4 m_\pi^2 e^{-m_\pi L}
 \]

[Graph showing trend of g_A with a]
g_A Comparison between CalLat and PNDME

PDG
1.272(02)

CalLat ’17B
1.285(17) [+0.8σ]

PNDME ’18
1.213(33) [-1.8σ]

LHPC ’14
LHPC ’10
RBC/UKQCD ’08
Lin/Orginos ’07
Mainz ’17
ETMC ’17
ETMC ’15
RQCD ’14
QCDSF/UKQCD ’14
Mainz ’12

CalLat ’17B (Preliminary)

PNDME ’18 (Preliminary)

CalLat ’17A

PNDME ’16

Mainz ’17

ETMC ’15

Lin/Orginos ’07

RBC/UKQCD ’08

LHPC ’14

LHPC ’10

PNDME ’18 (Preliminary)

PDG 1.2723(23)
<table>
<thead>
<tr>
<th></th>
<th>PNDME</th>
<th>CalLat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential source position in C_{3pt}</td>
<td>At sink</td>
<td>At current (at all t)</td>
</tr>
<tr>
<td></td>
<td>All \vec{p} & γ, single t_{sep}</td>
<td>Single \vec{p} & γ, all t_{sep}</td>
</tr>
<tr>
<td>Excited State</td>
<td>three-state fit</td>
<td>Summation method + two-state fit</td>
</tr>
<tr>
<td></td>
<td>$t_{sep} = 0.9 - 1.5$ fm</td>
<td>$t_{sep} = 0.5 - 1.5$ fm</td>
</tr>
<tr>
<td>Renormalization</td>
<td>NPR</td>
<td>$Z_A/Z_V = 1$</td>
</tr>
<tr>
<td>Leading (a, m_π)</td>
<td>a, m_π^2</td>
<td>$(a/w_0)^2, (m_\pi/F_\pi)^2$</td>
</tr>
</tbody>
</table>
Fixed-sink method

- Fixed sink timeslice, momentum, projection
- Sequential prop from sink
- Any operator insertions with any momenta can be obtained by contraction
- Need sequential prop for each t_{sep}

Current-at-all-timeslices

- Current inserted at all lattice space-time
- Sequential prop from current insertion
- Any sink timeslices obtained by contraction
- Need sequential propagator calculation for each current (A, V) and momentum
Excited States - PNDME

- 3-state fit with \(t_{sep} \approx 0.9 - 1.5 \text{ fm} \)
- Data at \(t_{sep} = 14a \) are noisy
Excited States - CalLat

- Remove excited states by 2-point difference in summation method:

\[
g_{A,V}^{\text{eff}}(t_{\text{sep}}) = \frac{N_{3\text{pt}}(t_{\text{sep}} + 1)}{C_{2\text{pt}}(t_{\text{sep}} + 1)} - \frac{N_{3\text{pt}}(t_{\text{sep}})}{C_{2\text{pt}}(t_{\text{sep}})}
\]

Usual summation method:

\[
\sum_{t=1}^{t_{\text{sep}}-1} \frac{C_{3\text{pt}}(t_{\text{sep}}, t)}{C_{2\text{pt}}(t_{\text{sep}})} = \text{Const} + t_{\text{sep}}g_A + \cdots
\]

- Remove remaining excited state by two-state fit to \(g_{A,V}^{\text{eff}}\) with

\[t_{\text{sep}} \approx 0.5 - 1.5 \text{ fm}\]
Continuum extrapolation - CalLat

- Upward trend in α^2
- $g_A = 1.285(17)$
Continuum extrapolation - PNDME

- Downward trend in a
- $g_A = 1.213(33)$
- Largely driven by $a \sim 0.06$ fm points
- Without $a \sim 0.06$ fm, $g_A = 1.238(49)$
Flavor-diagonal g_A^u, g_A^d, and g_A^s

- Proton spin decomposition
 \[\frac{1}{2} = \frac{1}{2} \Delta \Sigma + L_q + \Delta G \]
 \[\Delta \Sigma = g_A^u + g_A^d + g_A^s + \cdots \]

- Need evaluation of quark-line connected & disconnected diagrams
Current Status - g_A^s

- Experiments Lattice QCD
 - PNDME ’18 (Preliminary)
 - ETMC ’17
 - χQCD ’16
 - CMMS/QCDSF/UKQCD ’15
 - Engelhardt ’12
 - QCDSF ’12

- Global Fit (Lattice PDF ’17)
 - JAM17
 - JAM15
 - NNPDFpol1.1
 - DSSV08

Current Status - g_A^u and g_A^d

Lattice QCD
- ETMC '17
- JAM17
- JAM15
- NNPDFpol1.1
- DSSV08

Experiments
- Global Fit (Lattice PDF '17)
- JAM17
- JAM15
- NNPDFpol1.1
- DSSV08

Disconnected contribution: PNDME

\[g_{\text{disc}} \]

\[g_{\text{disc}}^s \]

\[a \text{ (fm)} \]

\[M_{\pi}^2 \text{ (GeV}^2) \]
Conclusion

• g_A: CalLat provides most precise lattice QCD estimate based on fits with small t_{sep} and exact $Z_A/Z_V = 1$

• Difference between PNDME and CalLat comes mostly from difference in a-extrapolation with results at $a \sim 0.06$ fm

• g^u,d_A: PNDME show a significant dependence on a and m_π. The larger negative disconnected contribution reduces the contribution of quarks to the proton spin:

\[\frac{1}{2} \Sigma = 0.201(18) \text{ [ETMC ’17]} \]
\[\frac{1}{2} \Sigma = 0.144(17) \text{ [PNDME ’18 (preliminary)]} \]