Lattice Calculation of Parton Distribution Functions

SPC Summary 2018

Introduction

Working definition - calculation of x-dependent PDFs and QDAs (quark distribution amplitudes) from Euclidean-space lattice calculations.

Quasi-PDF (qPDF) interpreted in LaMET (Large Momentum Effective Theory)
 was proposed by X.Ji
 X. Ji, Phys. Rev. Lett. 110 (2013) 262002

$$q(x, \mu^{2}, P^{z}) = \int \frac{dz}{4\pi} e^{izk^{z}} \langle P \mid \bar{\psi}(z) \gamma^{z} e^{-ig \int_{0}^{z} dz' A^{z}(z')} \psi(0) \mid P > + \mathcal{O}((\Lambda^{2}/(P^{z})^{2}), M^{2}/(P^{z})^{2}))$$

Quasi distributions approach light-cone distributions in limit of large Pz

$$q(x, \mu^2, P^z) = \int_x^1 \frac{dy}{y} Z\left(\frac{x}{y}, \frac{\mu}{P^z}\right) q(y, \mu^2) + \mathcal{O}(\Lambda^2/(P^z)^2, M^2/(P^z)^2)$$

• Pseudo-PDF (pPDF) recognizing generalization of PDFs in terms of *loffe Time.* $\nu = p \cdot z$ A. Radyushkin, PLB767 (2017)

$$\mathcal{M}^{\alpha}(z,p) = \langle p \mid \bar{\psi}(z)\gamma^{\alpha} \exp\left(-ig \int_{0}^{z} dz' A^{z}(z')\right) \psi(0) \mid p \rangle$$

Introduction - II

Good "Lattice Cross Sections" (LCS) Ma and Qiu, Phys. Rev. Lett. 120 022003

$$\sigma_{n}(\omega,\xi^{2},P^{2}) = \langle P \mid T\{\mathcal{O}_{n}(\xi)\} \mid P \rangle \quad \begin{cases} \mathcal{O}_{S}(\xi) &= \xi^{4}Z_{S}^{2}[\bar{\psi}_{q}\psi_{q}](\xi)[\bar{\psi}_{q}\psi](0) \\ \mathcal{O}_{V'}(\xi) &= \xi^{2}Z_{V'}^{2}[\bar{\psi}_{q}\xi \cdot \gamma\psi_{q'}](\xi)[\bar{\psi}_{q'}\xi \cdot \gamma\psi](0) \end{cases}$$
 whence

$$\sigma_n(\omega,\xi^2,P^2) = \sum_a \int_{-1}^1 \frac{dx}{x} f_a(x,\mu^2) K_n^a(x\omega,\xi^2,x^2P^2,\mu^2) + \mathcal{O}(\xi^2\Lambda_{\rm QCD}^2)$$
 KF Liu, SJ Dong, PRL72, 1790 (1994) Hadronic Tensor (HT) $W_{\mu\nu} = \frac{1}{4\pi} \int d^4z \, e^{iq\cdot z} \langle p \mid J_\mu(z)^\dagger J_\nu(0) \mid p \rangle$

$$C_4(\vec{p}, \vec{q}, \tau) = \sum_{\vec{x}_f} e^{-i\vec{p}.\vec{x}_f} \sum_{\vec{x}_2, \vec{x}_1} e^{-i\vec{q}.(\vec{x}_2 - \vec{x}_1)} \langle N(\vec{x}_f, t_f) J_{\mu}(\vec{x}_2, t_2) J_{\nu}(\vec{x}_1, t_1) \bar{N}(\vec{0}, t_0) \rangle$$

This is a **four-point** function.

- Moment Methods
 - Extended operators: Z.Davoudi and M. Savage, PRD 86,054505 (2012)
 - Valence heavy quark: W.Detmold and W.Lin, PRD73, 014501 (2006)
- Related: calculation of gluon spin operator

Proposals

Team: T. Izubuchi, L. Jin, C. Kallidonis, N. Karthik, S. Mukherjee, P.

Petreczky, C. Shugert, and S. Syritsyn

Project: Computing Pion Parton Distribution Function on Fine Lattice

Request: 0.71M GPU, 80TB Disk, 100TB Tape

Approach: qPDF

HISQ sea and Clover valence at very fine lattice spacings of a \sim 0.06 and 0.04 fm to get to high momenta.

Team: Jian Liang, Keh-Fei Liu, Yi-Bo Yang and Terrence Draper

Project: Lattice calculation of nucleon EDM and hadronic tensor

Request: 60M JPsi on KNL/SKX, 81TB Disk

Approach: HT

Clover on DWF at valence at a ~ 0.06fm, 370 MeV pion. Expect x from 0.07 to 0.45.

Proposals

Team: <u>Huey-Wen Lin</u>, Xiangdong Ji, Luchang Jin, Yi-Bo Yang, Yong Zhao, Jiunn-Wei Chen, Yu-Sheng Liu, and Jian-Hui Zhang

Chen, Tu-Sheng Liu, and Jian-Hui Zhang

Project: Three-Dimensional and Flavor Structure of the Nucleon

Request: 40.8M JPsi core hours; 400K GPU hours

Approach: qPDF

Clover on HISQ at physical quark masses. Extending previous work on PDFs to Generalized Parton Distributions.

Team: Bipasha Chakraborty, Robert Edwards, Balint Joo, Kostas Orginos, Jianwei Qiu, Anatoly Radyushkin, <u>David Richards</u>, Raza Sufian, Frank Winter, Colin Egerer, Joe Karpie, Anatoly Radyushkin, Savvas Zafeiropoulos

Project: Parton Distribution Functions and Amplitudes of the Pseudoscalar Mesons and Nucleon from Lattice QCD

Request: 40.8M JPsi core hours; 400K GPU hours

Approach: pPDF and LCS

Clover on clover. pPDF for nucleon, and LCS for pion.

Recent qPDF and pPDF Results

Orginos, Radyushkin, Karpie and Zafeiropoulos, arXiv:1706.05373

- Pseudo-PDF
- Quenched
- pion mass 600 MeV

Recent qPDF and pPDF Results

Pioneers LP3 Collaboration (JW Chen et al), arXiv:1803.04393

Alexandrou et al, arXiv:1803.02685

- Quasi-PDF approach
- Physical Pion Mass

Challenges/Questions

Joe Karpie

Relation between qPDF and pPDF approaches

- Both integrals of loffe-Time Distribution Function
- Should yield same PDF after matching and systematic controls

$$P(x, z_0^2) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\nu \, e^{-i\nu x} M(\nu, z_0^2)$$

$$Q(x, p_z^2) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\nu \, e^{-i\nu x} M(\nu, \frac{\nu^2}{p_z^2})$$

Challenges/Questions - II

Renormalization and Matching

- LaMET/qPDF see talk by Yi-Bo Yang
- $\begin{array}{ll} \text{- pPDF} \\ \text{Form } \textit{reduced matrix element} \end{array} \qquad \mathcal{M}(\nu,z^2) = \frac{M(\nu,z^2)}{M(0,z^2)} \\ \text{Free of UV divergences; well-defined continuum limit} \end{array}$
- HT and LCS

Local current operators, continuum perturbation theory.

Challenges/Questions - III

High spatial momentum and lattice systematics

- Momentum smearing to reach high momenta
- Finite-volume effects
- Range of Bjorken-x
- Relation to moment calculations

Inverse Problem

$$\sigma_{n}(\omega, \xi^{2}, P^{2}) = \sum_{a} \int_{-1}^{1} \frac{dx}{x} f_{a}(x, \mu^{2}) K_{n}^{a}(x\omega, \xi^{2}, x^{2}P^{2}, \mu^{2}) + \mathcal{O}(\xi^{2}\Lambda_{\text{QCD}}^{2})$$
Extract PDF?

Calculate on Lattice

Calculate in PQCD

→ Hadronic-tensor Talk Jian Liang

Whitepaper

Home

Registration

Participants
Venue Details

Visa Information

Travel Information

Timetable

Final Bulletin

Administrative Responsible

Michelle Bosher

michelle.bosher@physics.ox.ac. +44 1865 273996 The workshop will be hosted at Balliol College, sessions will start at 2pm on 22/03/2017 and will end at 4pm on 24/03/2017

The goal of this workshop is to bring together the global PDF analysis and lattice-QCD communities to explore ways to improve current PDF determinations. In particular, we plan to set precision goals for lattice-QCD calculations so that these calculations, together with experimental input, can achieve more reliable determinations of PDFs. In addition we will discuss what impact such improved determinations of PDFs will have on future new-physics searches.

Workshop participation is by invitation only

There will be introductory-level talks on the first day to bring state of the other. The remainder of the workshop will be prin by topic. Short presentations will be scheduled as the require questions from both communities, and set 5-year precision grimpact quantities. The findings of the workshop will be compil

Organized by:

- Huey-Wen Lin (Michigan State University)
- Emanuele Nocera (Oxford University)
- Fred Olness (Southern Methodist University)
 Kostas Orginos (College of William and Mary)
- Juan Rojo (Oxford University)

With support from the European Research Council through

Lattice PDF Workshop, 6-8 April 2018

Overview

Scientific Programme

Timetable

Contribution List

Registration

Participant List

Location

Lodging

MCFP Workshop on Lattice Parton Physics Maryland Center for Fundamental Physics (MCFP) University of Maryland College Park, MD

April 6-8, 2018

Organizer:

Taku Izubuchi (BNL)
Karl Jansen (DESY)
Xiangdong Ji (University of Maryland/TD Lee Institute, Shanghai)
Jianwei Qiu (JLab)
Feng Yuan (LBNL)

