Lattice QCD and neutrino-Nucleus Scattering

Coordinators: Andreas Kronfeld and David Richards

Contributors: Will Detmold, Rajan Gupta, Keh-Fei Liu, Sergey Syritsyn,....

Background

- Physics giving rise to neutrino masses identified as focus by 2014 P5 Strategic Plan.
- **US Response** DUNE (Deep Underground Neutrino Experiment) hosted by FNAL.
- Other efforts in Europe and Japan....but US leadership...
- For the US Lattice Community:
 - Identify calculations essential to success of program
 - Important questions and impact in both *nuclear* and *particle* physics
- Neutrino Scattering Theory Experiment Collaboration
 - <u>http://nustec.fnal.gov</u>
 - arXiv:1706.03621v2
- Overlap with Cold QCD white paper, (and lepton/ quark flavor and fundamental symmetries?).

Introduction

NuSTEC^a White Paper: Status and Challenges of Neutrino-Nucleus Scattering

L. Alvarez-Ruso,¹ M. Sajjad Athar,² M. B. Barbaro,³ D. Cherdack,⁴ M. E. Christy,⁵ P. Coloma,⁶ T. W. Donnelly,⁷ S. Dytman,⁸ A. de Gouvêa,⁹ R. J. Hill,^{10,6} P. Huber,¹¹ N. Jachowicz,¹² T. Katori,¹³ A. S. Kronfeld,⁶ K. Mahn,¹⁴ M. Martini,¹⁵ J. G. Morfín,⁶ J. Nieves,¹ G. Perdue,⁶ R. Petti,¹⁶ D. G. Richards,¹⁷ F. Sánchez,¹⁸ T. Sato,^{19,20} J. T. Sobczyk,²¹ and G. P. Zeller⁶

Thomas Jefferson National Accelerator Facility

Template

- Introduction
 - Experiment
 - Nuclear Theory Overview
 - Lattice Opportunities
 - Lattice QCD most effective (e.g. form factors)
 - Lattice QCD only way (e.g. two-body currents)
- Straightforward Calculations
- More Challenging
- Most Challenging
- Computational Requirements

Straightforward Calculations

Calculations we know how to do, but need improved control over systematic and statistical uncertainties - pion mass, lattice spacing, disconnected diagrams,...

Nucleon Form Factors

- Calculations of vector form factors well-established: use as validation
- Axial-vector form factors crucial target charged current and neutral current
 - Determination of axial-current charged radius and gA
- Marciano
- Key Measures of QCD, cf proton charge radius.
- Improved disconnected methods for neutral current
- z-expansion
- blind analyses
- analogy with CKM, success of LQCD

Straightforward - II

Nucleon Matrix Elements

- Key precision quantity of lattice calculations
- Neutrino scattering:
 - Additional structure function F_3 beyond that of EM interactions

$$W_{\alpha\beta} = \left(\frac{q_{\alpha}q_{\beta}}{q^2} - g_{\alpha\beta}\right)W_1 + \frac{1}{M^2}\left(p_{\alpha} - \frac{p \cdot q}{q^2}q_{\alpha}\right)\left(p_{\beta} - \frac{p \cdot q}{q^2}q_{\beta}\right)W_2$$
$$-\frac{i}{2M}\epsilon\alpha\beta\rho\sigma\rho^{\rho}q^{\sigma}W_3$$

- different combinations of flavor structure
- Elucidate role of strangeness in nucleon
- Low moments of u, d, s and glue in nucleon
- s vs sbar distribution

More Challenging

Calculation of x-dependence of PDFs

- Refer to Cold QCD white paper for methodology quasi-PDFs, pseudo-PDFs, hadronic tensor, lattice cross sections
- Extraction of higher-twist effects for lattice cross sections Resonance production
- Neutrino scattering at low energies (< 3 GeV) excites resonances N*, Delta.
- Formalism developed for infinite-volume momentum-dependent amplitudes from finite-energy shifts at finite volume, and for transition to two-body final states.
- State-of-the-art applications for momentum-dependent scattering amplitudes in meson sector, and in $\rho \rightarrow \gamma^* \pi$; exploratory Δ phase shift.
- Theoretical and computational needs and expected results for baryon final states in five years.

Challenging - II

Axial currents in light nuclei

- Nuclear effects in neutrino nucleus scattering important. Gamow-Teller transitions show transitions in nuclei not simply scaled from n→ p e v.
- Calculations of A=2, 3 axial transitions in the forward limit have been performed at $m_{\pi} = 800$ MeV. Calculations at the physical quark masses and with rudimentary control of continuum limit will be performed in the 5 years.
- Extension for form factors in nuclei and to moments of PDFs
- Lattice input to EFTs for heavier nuclei

Most Challenging

"Precision" Calculations

• EM and isospin-break effects. Are they relevant?

Axial currents in heavy nuclei

- Direct calculations of matrix elements in argon.
- Direct calculations of matrix elements in carbon and expt. accessible light nuclei; A dependence of EFT effects.
- x-dependence of PDFs in nuclei.

Summary

