RBC/UKQCD $\pi \pi$ scattering, $K \rightarrow \pi \pi$, and distillation projects

Tom Blum (UCONN/RBRC)

USQCD All Hands Meeting, Fermilab
April 20, 2018

Outline I
(1) $\pi \pi$ scattering and $K \rightarrow \pi \pi$
(2) QCD + QED studies using twist-averaging
(3) Exclusive Study of $(g-2)_{\mu}$ HVP and Nucleon Form Factors with Distillation
4. Precise scale setting for $(g-2)_{\mu}$
(5) References

Investigators: Blum (PI), Peter Boyle (Edinburgh), Norman Christ (Columbia), Daniel Hoying (UConn/BNL), Taku Izubuchi (BNL/RBRC), Luchang Jin (UConn/RBRC), Chulwoo Jung (BNL), Christopher Kelly (Columbia), Christoph Lehner (BNL), Robert Mawhinney (Columbia), Chris Sachrajda (Southampton), Amarjit Soni (BNL)
compute request: 91.2 M JPsi core-hrs on JLab or BNL KNL clusters
storage request: 200 TB disk, 200 TB tape

Motivation and background

- SM extremely successful, but ...
- Direct CP violation in kaon decays offers good place to look for breakdown, c.f. single phase in CKM matrix must explain all violation in SM

$$
\begin{aligned}
\operatorname{Re} \frac{\epsilon^{\prime}}{\epsilon} & =\frac{1}{6}\left(1-\frac{\Gamma\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right) \Gamma\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)}{\Gamma\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right) \Gamma\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)}\right) \\
& =\operatorname{Re}\left\{\frac{i \omega e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{Im} A_{2}}{\operatorname{ReA}_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]\right\} \\
H_{W} & =\frac{G_{F}}{\sqrt{2}} V_{u s}^{*} V_{u d} \sum_{i}\left[z_{i}(\mu)+\tau y_{i}(\mu)\right] Q_{i}(\mu) \\
A\left(K^{0} \rightarrow \pi \pi\right)_{I} & =A_{I} e^{i \delta_{l}}=\langle\pi \pi| H_{W}|K\rangle
\end{aligned}
$$

- Experiment: $16.6(2.3) \times 10^{-4}$
- SM: $1.38(5.15)(4.59) \times 10^{-4}$ [1] (RBC/UKQCD G-parity bc project)

Methodology

Matrix elements from Euclidean correlation functions

$$
\left\langle\chi_{\pi \pi}(t) Q_{i}\left(t_{\mathrm{op}}\right) \chi_{K}^{\dagger}(0)\right\rangle=\sum_{m} \sum_{n}\langle 0| \chi_{\pi \pi}|n\rangle\langle n| Q_{i}|m\rangle\langle m| \chi_{K}^{\dagger}|0\rangle e^{-E_{n}\left(t-t_{\mathrm{op}}\right)} e^{-E_{m} t_{\mathrm{op}}}
$$

- Physical kinematics corresponds to excited state, ground state is pions at rest
- G-parity bc's (RBC/UKQCD): ground state is physical (pions at rest not allowed)
- For periodic bc's, use A2A[2]+AMA[3]+GEVP analysis to extract excited state

Preliminary results with current allocation

- 2+1 flavor, physical point, Möbius DWF, $1 \mathrm{GeV}, 24^{3}$ ensemble
- A2A/AMA measurements on 66 configurations, 2000 low modes, 1 hit for high
$\pi \pi, 10$, momtotal000 analysis 24c

$\pi \pi, 12$, momtotal000 analysis 24 c

1024 c sigmasigma A 1PLUS

Good precision on $I=0$ excited (physical) state, $\gtrsim 1.5 \%$

Proposed calculations

2+1 flavor physical point, Möbius DWF, Iwasaki gauge action ensembles (RBC/UKQCD)

Table: Per-configuration cost of proposed calculations. Costs for propagators (props) are based on (z)Möbius DWF with $L_{s}=12$.

type	a^{-1}	size	Cost (KNL node-hours)			configs	Total
			props	meson fields	contractions		(M core-hrs)
$K \rightarrow \pi \pi$	1	$24^{3} \times 64$	72	64	739	100	16.8
$\pi \pi, K \rightarrow \pi \pi$	1.4	$32^{3} \times 64$	171	470	$202+739$	100	30.4
$\pi \pi$	1	$32^{3} \times 64$	114	1183	1008	100	44.0

Dominated by contractions

Outline I
(1) $\pi \pi$ scattering and $K \rightarrow \pi \pi$
(2) QCD + QED studies using twist-averaging
(3) Exclusive Study of $(g-2)_{\mu}$ HVP and Nucleon Form Factors with Distillation
4. Precise scale setting for $(g-2)_{\mu}$
(5) References

QCD + QED studies using twist-averaging

Investigators: Mattia Bruno (BNL, co-PI), Xu Feng (Peking University), Taku Izubuchi (BNL/RBRC), Luchang Jin (UConn/RBRC), Christoph Lehner (BNL, PI), Aaron Meyer (BNL)
Collaborators: Tom Blum (UConn), Norman Christ (CU), Chulwoo Jung (BNL), Chris Sachrajda (Southampton), Amarjit Soni (BNL)
compute request: 59 M JPsi core-hrs on JLab or BNL KNL clusters
storage request: 80 TB disk

Motivation and background

- $O(\alpha)$ isospin breaking corrections are important for many QCD observables
- muon g-2
- light quark masses
- f_{π}
- τ decays (dispersive treatment of muon $\mathrm{g}-2$)
- $1^{\text {st }}$ two corrections calculated on $1.73 \mathrm{GeV}, 48^{3}$, physical point Möbius DWF ensemble (RBC/UKQCD)
- goal: take continuum limit

Methodology: perturbative treatment of QED © $O(\alpha)$

HVP

(d)

(e)

(f) F

f_{π}

- Sample photon vertex stochastically, using importance sampling strategy

$$
\begin{aligned}
C_{2}^{a b}(z) & =\left\langle O_{a}(z) O_{b}(0)\right\rangle \\
C_{3}^{a b ; \mu}(x, z) & =\left\langle O_{a}(z) O_{b}(0) j_{\mu}(x)\right\rangle \\
C_{4}^{a b ; \mu \nu}(x, y, z) & =\left\langle O_{a}(z) O_{b}(0) j_{\mu}(x) j_{\nu}(y)\right\rangle \\
O_{a}(z) & =\bar{q}(z) \Gamma_{a} q(z), \quad j_{\mu}(x)=\bar{q}(x) \gamma_{\mu} q(x),
\end{aligned}
$$

- Use twist averaging for photon to reduce/control FV errors [6]

Results from current allocation

- $O(\alpha)$ corrections to HVP, 1.73 GeV , physical point Möbius DWF ensemble (RBC/UKQCD) [4]
- Isospin breaking corrections in τ decays (Bruno, KEK workshop on HVP)

Proposed calculations

$2+1$ flavor, physical point Möbius DWF, $2.38 \mathrm{GeV}, 64^{3}$ ensemble (RBC/UKQCD)

> | 12 sloppy 64^{3} solves on 64 KNL nodes | 600 seconds |
| :---: | :---: |
| 12 exact 64^{3} solves on 64 KNL nodes | 2580 seconds |
| Number of configurations | 30 |
| Number of sloppy solves per configuration | 900×12 |
| Number of exact solves per configuration | 15×12 |
| Total computational cost on 64^{3} for sloppy solves in M Jpsi-core hours | 55 |
| Total computational cost on 64^{3} for exact solves in M Jpsi-core hours | 4 |

Total request
59 M Jpsi-core hours
Table: Cost estimates for the proposed computation. We intend to use an AMA [3] setup with parameters described in this table.

Outline I
(1) $\pi \pi$ scattering and $K \rightarrow \pi \pi$
(2) QCD + QED studies using twist-averaging
(3) Exclusive Study of $(g-2)_{\mu}$ HVP and Nucleon Form Factors with Distillation
4. Precise scale setting for $(g-2)_{\mu}$
(5) References

Exclusive Study of $(g-2)_{\mu}$ HVP and Nucleon Form Factors with Distillation

Investigators: A. S. Meyer (PI), M. Bruno, T. Izubuchi, Y. C. Jang, C. Jung, and C. Lehner

compute request: 46.7 M JPsi core-hrs on JLab or BNL KNL clusters
storage request: 50 TB disk

Motivation and background

- muon g-2 experiment E989 at Fermilab
- Error on HVP contribution to $g-2$ desired at sub-percent level
- Long distance part of correlation function is noisy, dominates error
- use exclusive $\pi \pi$ channel(s) to improve "bounding method" [4], significantly reduce statistical error
- ν oscillation experiments NO ν A, DUNE, and HyperK
- precision measurements of mass-squared splittings, mixing angles, CP-violating angle in the lepton sector
- need accurate/precise nucleon axial-vector form factor calculations

Distillation Method (JLab/Trinity [7])

Eigenvectors of 3D laplacian act as a projection that smears quark fields in space

Eigenvectors used as sources, contracted at sink to create "perambulators"

$$
M_{t, \beta \alpha}^{j i}=\sum_{x y} \sum_{a b}\left\langle j_{t ; y}^{b}\right|\left(D_{y x, \beta \alpha}^{b a}\right)^{-1}\left|i_{0 ; x}^{a}\right\rangle
$$

Meson correlation functions constructed from tracing over perambulators

$$
C(t)=\operatorname{tr}\left[\Gamma M\left(t, t^{\prime}\right) \Gamma^{\prime} M\left(t^{\prime}, t^{\prime \prime}\right) \Gamma^{\prime \prime} M\left(t^{\prime \prime}, t^{\prime \prime \prime}\right) \ldots\right]
$$

Generalized EigenValue Problem

Vector current operator:

- Local $\mathcal{O}_{0}=\sum_{x} \bar{\psi}(x) \gamma_{\mu} \psi(x)$

Two 2π operators with different momenta

$$
\begin{aligned}
& \mathcal{O}_{n}=\mid \sum_{x y z} \bar{\psi}(x) f(x-z) e^{-\left.i \vec{p}_{\pi} \cdot \vec{z}_{\gamma} f(z-y) \psi(y)\right|^{2}} \\
& \text { - } \mathcal{O}_{1}: \frac{L}{2 \pi} \vec{p}_{\pi}=(1,0,0) \quad \text { • } \mathcal{O}_{2}: \frac{L}{2 \pi} \vec{p}_{\pi}=(1,1,0)
\end{aligned}
$$

Correlators arranged in a 3×3 symmetric matrix:

	\mathcal{O}_{0}	\mathcal{O}_{1}	\mathcal{O}_{2}
\mathcal{O}_{0}	$C_{\rho}^{(2)}$	$C_{\rho \rightarrow \pi \pi}^{(3)}$	$C_{\rho \rightarrow \pi \pi}^{(3)}$
\mathcal{O}_{1}		$C_{\pi \pi \rightarrow \pi \pi}^{(4)}$	$C_{\pi \pi \rightarrow \pi \pi}^{(4)}$
\mathcal{O}_{2}			$C_{\pi \pi \rightarrow \pi \pi}^{(4)}$

Analyze with Generalized EigenValue Problem (GEVP) method:

$$
C(t) V=C(t+\delta t) V \Lambda(\delta t), \quad \Lambda_{n n}(\delta t) \sim e^{+E_{n} \delta t}
$$

Results - HVP Bounding Method

$a^{-1}=1.015 \mathrm{GeV} 24^{3} \times 64$ physical mass ensemble
Precise reconstruction of long-distance contribution to HVP down to 1.5 fm
No bounding method (purple band):

$$
a_{\mu}^{H V P}=516(51)
$$

Start bounding method at $t=1.6 \mathrm{fm}, 1$ state reconstruction: $\quad a_{\mu}^{\mu V P}=570.2(8.3)$
Factor >5 improvement in statistical precision

Results - Nucleon Two-Point

Can compute nucleon form factors \Longrightarrow

- $g_{A}, F_{A}\left(Q^{2}\right)$
- $F_{V}\left(Q^{2}\right)$
- $F_{N \rightarrow \Delta}\left(Q^{2}\right)$

Useful for neutrino physics:
Axial form factor a dominant source of systematic uncertainty in ν oscillation experiments

Proposed calculations

$2+1$ flavor, physical point, Möbius DWF, $1.73 \mathrm{GeV}, 48^{3}$ ensemble (RBC/UKQCD)

Table: Compute costs

Configurations	15
Eigenvectors	60
Timeslices(Sloppy)	96
Timeslices(Exact)	16
Sloppy Solves [x1000]	172.8
Exact Solves [x1000]	43.2
Time/sloppy solve [Jpsi corehr]	53.7
Time/exact solve [Jpsi corehr]	488.0
Total Time [M Jpsi corehr]	46.7

Outline I
(1) $\pi \pi$ scattering and $K \rightarrow \pi \pi$
(2) QCD + QED studies using twist-averaging
(3) Exclusive Study of $(g-2)_{\mu}$ HVP and Nucleon Form Factors with Distillation
4) Precise scale setting for $(g-2)_{\mu}$
(5) References

Investigators: Mattia Bruno(PI), Taku Izubuchi, Christoph Lehner, Aaron Meyer
Collaborators: Thomas Blum, Norman Christ, Luchang Jin, Chulwoo Jung, Chris Kelly, Amarjit Soni
compute request: 47 M JPsi core-hrs on JLab or BNL KNL clusters

Motivation and background

- Per-mille determination of lattice spacing needed for muon g-2 calculations
- use distillation+AMA+GEVP to
- Ω^{-}mass sets scale
- ideal, isospin breaking (QED, non-degenerate quark masses) small [4]
- Demonstrate method on 1.73 GeV ensemble, then on to 2.38 GeV , take continuum limit

Methodology

Distillation with 60 modes of 3D Laplacian
\rightarrow full volume average \oplus optimize smearing function
AMA (2000 low-modes) sloppy inversions on 96 time slices; exact on 16
\rightarrow Master-Field error analysis, other physics goals
Large basis of operators to control excited states (e.g. GEVP)
\rightarrow different spin matrices and non-zero angular momentum

(RBC/UKQCD [8])

Proposed calculations

$2+1$ flavor, physical point, Möbius DWF, $1.73 \mathrm{GeV}, 48^{3}$ ensemble (RBC/UKQCD)

Table: Compute costs

single sloppy inversion on 32 KNL nodes single exact inversion on 32 KNL nodes	32 secs
sloppy time slices	286 secs
exact time slices	96
cost for a single distillation mode	272 KNL node-hours
distillation eigenvectors	60
cost per configuration	3.1 M JPsi core-hrs
number of configurations	15
Total computational request	47 M Jpsi core-hrs

Outline I
(1) $\pi \pi$ scattering and $K \rightarrow \pi \pi$
(2) QCD + QED studies using twist-averaging
(3) Exclusive Study of $(g-2)_{\mu}$ HVP and Nucleon Form Factors with Distillation
4. Precise scale setting for $(g-2)_{\mu}$
(5) References

嗇 Z．Bai et al．［RBC and UKQCD Collaborations］，Phys．Rev．Lett． 115 （2015） no．21， 212001 doi：10．1103／PhysRevLett．115．212001［arXiv：1505．07863［hep－lat］］．

嗇 J．Foley，K．Jimmy Juge，A．O＇Cais，M．Peardon，S．M．Ryan and J．I．Skullerud， Comput．Phys．Commun．172， 145 （2005）doi：10．1016／j．cpc．2005．06．008 ［hep－lat／0505023］．

目 T．Blum，T．Izubuchi and E．Shintani，Phys．Rev．D 88，no．9， 094503 （2013） ［arXiv：1208．4349［hep－lat］］．
（1．Blum et al．［RBC and UKQCD Collaborations］，arXiv：1801．07224［hep－lat］．
R．N．Carrasco，V．Lubicz，G．Martinelli，C．T．Sachrajda，N．Tantalo，C．Tarantino and M．Testa，Phys．Rev．D 91，no．7， 074506 （2015） doi：10．1103／PhysRevD． 91.074506 ［arXiv：1502．00257［hep－lat］］．

閪 C．Lehner and T．Izubuchi，PoS LATTICE 2014， 164 （2015）［arXiv：1503．04395 ［hep－lat］］．

盏 M. Peardon et al. [Hadron Spectrum Collaboration], Phys. Rev. D 80 (2009) 054506 doi:10.1103/PhysRevD.80.054506 [arXiv:0905.2160 [hep-lat]].

嗇 T. Blum et al. [RBC and UKQCD Collaborations], Phys. Rev. D 93 (2016) no.7, 074505 doi:10.1103/PhysRevD.93.074505 [arXiv:1411.7017 [hep-lat]].

