RBC/UKQCD $\pi\pi$ scattering, $K \rightarrow \pi\pi$, and distillation projects

Tom Blum (UCONN/RBRC)

USQCD All Hands Meeting, Fermilab

April 20, 2018

Outline I

QCD + QED studies using twist-averaging

(3) Exclusive Study of $(g - 2)_{\mu}$ HVP and Nucleon Form Factors with Distillation

4 Precise scale setting for $(g-2)_{\mu}$

$\pi\pi$ scattering and $K \to \pi\pi$

Investigators: Blum (PI), Peter Boyle (Edinburgh), Norman Christ (Columbia), Daniel Hoying (UConn/BNL), Taku Izubuchi (BNL/RBRC), Luchang Jin (UConn/RBRC), Chulwoo Jung (BNL), Christopher Kelly (Columbia), Christoph Lehner (BNL), Robert Mawhinney (Columbia), Chris Sachrajda (Southampton), Amarjit Soni (BNL) compute request: 91.2 M JPsi core-hrs on JLab or BNL KNL clusters

storage request: 200 TB disk, 200 TB tape

Motivation and background

- SM extremely successful, but ...
- Direct CP violation in kaon decays offers good place to look for breakdown, *c.f.* single phase in CKM matrix must explain all violation in SM

$$\operatorname{Re} \frac{\epsilon'}{\epsilon} = \frac{1}{6} \left(1 - \frac{\Gamma(K_{S} \to \pi^{+}\pi^{-})\Gamma(K_{L} \to \pi^{0}\pi^{0})}{\Gamma(K_{L} \to \pi^{+}\pi^{-})\Gamma(K_{S} \to \pi^{0}\pi^{0})} \right)$$
$$= \operatorname{Re} \left\{ \frac{i\omega e^{i(\delta_{2} - \delta_{0})}}{\sqrt{2}\varepsilon} \left[\frac{\operatorname{Im}A_{2}}{\operatorname{Re}A_{2}} - \frac{\operatorname{Im}A_{0}}{\operatorname{Re}A_{0}} \right] \right\}$$
$$H_{W} = \frac{G_{F}}{\sqrt{2}} V_{us}^{*} V_{ud} \sum_{i} \left[z_{i}(\mu) + \tau y_{i}(\mu) \right] Q_{i}(\mu)$$
$$A(K^{0} \to \pi\pi)_{I} = A_{I} e^{i\delta_{I}} = \langle \pi\pi | H_{W} | K \rangle$$

- Experiment: $16.6(2.3) \times 10^{-4}$
- SM: 1.38(5.15)(4.59) \times 10^{-4} [1] (RBC/UKQCD G-parity bc project)

Methodology

Matrix elements from Euclidean correlation functions

$$\langle \chi_{\pi\pi}(t)Q_i(t_{\mathrm{op}})\chi^{\dagger}_K(0)
angle = \sum_m \sum_n \langle 0|\chi_{\pi\pi}|n
angle \langle n|Q_i|m
angle \langle m|\chi^{\dagger}_K|0
angle e^{-E_n(t-t_{\mathrm{op}})}e^{-E_m t_{\mathrm{op}}}$$

- Physical kinematics corresponds to excited state, ground state is pions at rest
- G-parity bc's (RBC/UKQCD): ground state is physical (pions at rest not allowed)
- For periodic bc's, use A2A[2]+AMA[3]+GEVP analysis to extract excited state

Preliminary results with current allocation

- 2+1 flavor, physical point, Möbius DWF, 1 GeV, 24³ ensemble
- A2A/AMA measurements on 66 configurations, 2000 low modes, 1 hit for high

Good precision on I=0 excited (physical) state, $\gtrsim 1.5$ %

Proposed calculations

 $2{+}1$ flavor physical point, Möbius DWF, lwasaki gauge action ensembles (RBC/UKQCD)

Table: Per-configuration cost of proposed calculations. Costs for propagators (props) are based on (z)Möbius DWF with $L_s = 12$.

type	a^{-1}	size	Cost (KNL node-hours)			configs	Total
			props	meson fields	contractions		(M core-hrs)
$K o \pi \pi$	1	$24^{3} \times 64$	72	64	739	100	16.8
$\pi\pi$, $K o\pi\pi$	1.4	$32^{3} \times 64$	171	470	202+739	100	30.4
$\pi\pi$	1	$32^{3} \times 64$	114	1183	1008	100	44.0

Dominated by contractions

Outline I

2 QCD + QED studies using twist-averaging

(3) Exclusive Study of $(g - 2)_{\mu}$ HVP and Nucleon Form Factors with Distillation

4 Precise scale setting for $(g-2)_{\mu}$

QCD + QED studies using twist-averaging

Investigators: Mattia Bruno (BNL, co-PI), Xu Feng (Peking University), Taku Izubuchi (BNL/RBRC), Luchang Jin (UConn/RBRC), Christoph Lehner (BNL, PI), Aaron Meyer (BNL)

Collaborators: Tom Blum (UConn), Norman Christ (CU), Chulwoo Jung (BNL), Chris Sachrajda (Southampton), Amarjit Soni (BNL)

compute request: 59 M JPsi core-hrs on JLab or BNL KNL clusters storage request: 80 TB disk

Motivation and background

- $O(\alpha)$ isospin breaking corrections are important for many QCD observables
 - muon g-2
 - light quark masses
 - f_{π}
 - τ decays (dispersive treatment of muon g-2)
- 1st two corrections calculated on 1.73 GeV, 48³, physical point Möbius DWF ensemble (RBC/UKQCD)
- goal: take continuum limit

Methodology: perturbative treatment of QED @ $O(\alpha)$

• Sample photon vertex stochastically, using importance sampling strategy

$$\begin{split} C_2^{ab}(z) &= \langle O_a(z) O_b(0) \rangle ,\\ C_3^{ab;\mu}(x,z) &= \langle O_a(z) O_b(0) j_\mu(x) \rangle ,\\ C_4^{ab;\mu\nu}(x,y,z) &= \langle O_a(z) O_b(0) j_\mu(x) j_\nu(y) \rangle \\ O_a(z) &= \bar{q}(z) \Gamma_a q(z) , \quad j_\mu(x) = \bar{q}(x) \gamma_\mu q(x) , \end{split}$$

• Use twist averaging for photon to reduce/control FV errors [6]

Results from current allocation

- O(α) corrections to HVP, 1.73 GeV, physical point Möbius DWF ensemble (RBC/UKQCD) [4]
- Isospin breaking corrections in τ decays (Bruno, KEK workshop on HVP)

Proposed calculations

2+1 flavor, physical point Möbius DWF, 2.38 GeV, 64³ ensemble (RBC/UKQCD)

12 sloppy 64 ³ solves on 64 KNL nodes	600 seconds
12 exact 64 ³ solves on 64 KNL nodes	2580 seconds
Number of configurations	30
Number of sloppy solves per configuration	900 imes 12
Number of exact solves per configuration	15 imes12
Total computational cost on 64 ³ for sloppy solves in M Jpsi-core hours	55
Total computational cost on 64 ³ for exact solves in M Jpsi-core hours	4
Total request	59 M Jpsi-core hours

Table: Cost estimates for the proposed computation. We intend to use an AMA [3] setup with parameters described in this table.

Outline I

old D $\pi\pi$ scattering and $K o\pi\pi$

2 QCD + QED studies using twist-averaging

3 Exclusive Study of $(g - 2)_{\mu}$ HVP and Nucleon Form Factors with Distillation

4 Precise scale setting for $(g-2)_{\mu}$

Exclusive Study of $(g - 2)_{\mu}$ HVP and Nucleon Form Factors with Distillation

Investigators: A. S. Meyer (PI), M. Bruno, T. Izubuchi, Y. C. Jang, C. Jung, and C. Lehner compute request: 46.7 M JPsi core-hrs on JLab or BNL KNL clusters storage request: 50 TB disk

Motivation and background

- muon g-2 experiment E989 at Fermilab
 - $\bullet\,$ Error on HVP contribution to g-2 desired at sub-percent level
 - Long distance part of correlation function is noisy, dominates error
 - use exclusive $\pi\pi$ channel(s) to improve "bounding method" [4], significantly reduce statistical error
- ν oscillation experiments NO ν A, DUNE, and HyperK
 - precision measurements of mass-squared splittings, mixing angles, CP-violating angle in the lepton sector
 - need accurate/precise nucleon axial-vector form factor calculations

Distillation Method (JLab/Trinity [7])

Eigenvectors of 3D laplacian act as a projection that smears quark fields in space

Eigenvectors used as sources, contracted at sink to create "perambulators"

$$M^{ji}_{t,etalpha} = \sum_{xy}\sum_{ab} \langle j^b_{t;y} | (D^{ba}_{yx,etalpha})^{-1} | i^a_{0;x}
angle$$

Meson correlation functions constructed from tracing over perambulators

$$C(t) = \operatorname{tr}[\Gamma M(t,t')\Gamma' M(t',t'')\Gamma'' M(t'',t''')\dots]$$

Generalized EigenValue Problem

Vector current operator:

• Local $\mathcal{O}_0 = \sum_x ar{\psi}(x) \gamma_\mu \psi(x)$

Two 2π operators with different momenta

$$\mathcal{O}_{n} = \left| \sum_{xyz} \bar{\psi}(x) f(x-z) e^{-i\vec{p}_{\pi} \cdot \vec{z}} \gamma_{5} f(z-y) \psi(y) \right|^{2}:$$

• $\mathcal{O}_{1} : \frac{L}{2\pi} \vec{p}_{\pi} = (1,0,0)$
• $\mathcal{O}_{2} : \frac{L}{2\pi} \vec{p}_{\pi} = (1,1,0)$

Correlators arranged in a 3×3 symmetric matrix:

Analyze with Generalized EigenValue Problem (GEVP) method:

 $C(t) V = C(t + \delta t) V \Lambda(\delta t), \quad \Lambda_{nn}(\delta t) \sim e^{+E_n \delta t}$

Results - HVP Bounding Method

 $a^{-1} = 1.015 \ {
m GeV} \ 24^3 imes 64$ physical mass ensemble

Precise reconstruction of long-distance contribution to HVP down to 1.5 ${\rm fm}$

No bounding method (purple band): $a_{\mu}^{HVP} = 516(51)$ Start bounding method at t = 1.6 fm, 1 state reconstruction: $a_{\mu}^{HVP} = 570.2(8.3)$

Factor > 5 improvement in statistical precision

Results - Nucleon Two-Point

Can compute nucleon form factors \implies

- g_A , $F_A(Q^2)$
- $F_V(Q^2)$
- $F_{N\to\Delta}(Q^2)$

Useful for neutrino physics:

Axial form factor a dominant source of systematic uncertainty in ν oscillation experiments

Proposed calculations

2+1 flavor, physical point, Möbius DWF, 1.73 GeV, 48³ ensemble (RBC/UKQCD)

Table: Compute costs

Configurations	15	
Eigenvectors	60	
Timeslices(Sloppy)	96	
Timeslices(Exact)	16	
Sloppy Solves [×1000]	172.8	
Exact Solves [x1000]	43.2	
Time/sloppy solve [Jpsi corehr]	53.7	
Time/exact solve [Jpsi corehr]	488.0	
Total Time [M Jpsi corehr]	46.7	

Outline I

 $oldsymbol{1}$ $\pi\pi$ scattering and $K o\pi\pi$

2 QCD + QED studies using twist-averaging

(3) Exclusive Study of $(g - 2)_{\mu}$ HVP and Nucleon Form Factors with Distillation

4 Precise scale setting for $(g-2)_{\mu}$

Precise scale setting for $(g-2)_{\mu}$

Investigators: Mattia Bruno(PI), Taku Izubuchi, Christoph Lehner, Aaron Meyer Collaborators: Thomas Blum, Norman Christ, Luchang Jin, Chulwoo Jung, Chris Kelly, Amarjit Soni

compute request: 47 M JPsi core-hrs on JLab or BNL KNL clusters

Motivation and background

- Per-mille determination of lattice spacing needed for muon g-2 calculations
- \bullet use distillation+AMA+GEVP to
- Ω^- mass sets scale
 - ideal, isospin breaking (QED, non-degenerate quark masses) small [4]
- Demonstrate method on 1.73 GeV ensemble, then on to 2.38 GeV, take continuum limit

Methodology

Distillation with 60 modes of 3D Laplacian

 \rightarrow full volume average \oplus optimize smearing function

AMA (2000 low-modes) sloppy inversions on 96 time slices; exact on 16 \rightarrow Master-Field error analysis, other physics goals

Large basis of operators to control excited states (e.g. GEVP)

 \rightarrow different spin matrices and non-zero angular momentum

(RBC/UKQCD [8])

Proposed calculations

2+1 flavor, physical point, Möbius DWF, 1.73 GeV, 48³ ensemble (RBC/UKQCD)

Table: Compute costs

single sloppy inversion on 32 KNL nodes	32 secs
single exact inversion on 32 KNL nodes	286 secs
sloppy time slices	96
exact time slices	16
cost for a single distillation mode	272 KNL node-hours
distillation eigenvectors	60
cost per configuration	3.1 M JPsi core-hrs
number of configurations	15
Total computational request	47 M Jpsi core-hrs

Outline I

old D $\pi\pi$ scattering and $K o\pi\pi$

2 QCD + QED studies using twist-averaging

(3) Exclusive Study of $(g - 2)_{\mu}$ HVP and Nucleon Form Factors with Distillation

4 Precise scale setting for $(g-2)_{\mu}$

- Z. Bai *et al.* [RBC and UKQCD Collaborations], Phys. Rev. Lett. **115** (2015) no.21, 212001 doi:10.1103/PhysRevLett.115.212001 [arXiv:1505.07863 [hep-lat]].
- J. Foley, K. Jimmy Juge, A. O'Cais, M. Peardon, S. M. Ryan and J. I. Skullerud, Comput. Phys. Commun. **172**, 145 (2005) doi:10.1016/j.cpc.2005.06.008 [hep-lat/0505023].
- T. Blum, T. Izubuchi and E. Shintani, Phys. Rev. D 88, no. 9, 094503 (2013) [arXiv:1208.4349 [hep-lat]].
- T. Blum et al. [RBC and UKQCD Collaborations], arXiv:1801.07224 [hep-lat].
- N. Carrasco, V. Lubicz, G. Martinelli, C. T. Sachrajda, N. Tantalo, C. Tarantino and M. Testa, Phys. Rev. D 91, no. 7, 074506 (2015) doi:10.1103/PhysRevD.91.074506 [arXiv:1502.00257 [hep-lat]].
- C. Lehner and T. Izubuchi, PoS LATTICE **2014**, 164 (2015) [arXiv:1503.04395 [hep-lat]].

- M. Peardon *et al.* [Hadron Spectrum Collaboration], Phys. Rev. D **80** (2009) 054506 doi:10.1103/PhysRevD.80.054506 [arXiv:0905.2160 [hep-lat]].
- T. Blum *et al.* [RBC and UKQCD Collaborations], Phys. Rev. D **93** (2016) no.7, 074505 doi:10.1103/PhysRevD.93.074505 [arXiv:1411.7017 [hep-lat]].