

AUP HL-LHC RFD Cavity RF Design

Zenghai Li - SLAC

HL-LHC RFD Design Freeze Review – FNAL – March 15, 2018

Outline

- Issues to be addressed for the HL-LHC crab cavity to meet HiLumi operation requirements
 - High HOM beam power at 760 MHz mode
 - High octupole current for compensating HOM effects
- RFD design Improvements
 - Cavity shape to minimize HOM beam power at 760MHz
 - HOM couplers to minimize HOM impedance
- Dimension sensitivity analysis
- Summary

LARP Prototype RFD Crab Cavity

- No lower order mode
- Compact, clears the second beam pipe
- Minimal multipole fields with shaped pole face

LARP Prototype RFD Crab Cavity		
Frequency (MHz)	400.7	
	9	
Operating Mode	TE11	
Lowest dipole HOM (MHz)	633	
Lowest acc HOM	715	
High R/Q acc HOM	760.9	
Iris aperture (diameter) (mm)	84	
Transverse dimension (mm)	281	
Vertical dimension (mm)	281	
Longitudinal dimension (w/o	556	
couplers) (mm)		
R _T (ohm/cavity)	433	
V_{T} (MV/cavity)	3.34	
Bs (mT)	55.5	
Es (MV/m)	32.6	

3

760 MHz Mode Issue of the LARP Prototype Cavity

- Impedance meets beam dynamics requirements (2016)
- (Elias Métral, Joint LARP CM26/Hi-Lumi Meeting, SLAC, 19/05/2016)
- Acc. HOM mode at 760.94 MHz too close to beam resonance at 761.50 MHz
- Resulting in beam HOM power >10kW
- Design spec for beam power: < 1kW

Requirements from recent beam dynamics study

Most HOMs require negligible octupole current, even if they fall on the couplebunch line

(no other sources of impedance) (Nov. 2017)

In order not to affect the operational scenarios we need to keep the CC HOMs below 1 M Ω /m

Ultimate scenario

S. Antipov, D. Amorim, N. Biancacci, X. Buffat, L. Carver, F. Giordano, G. Mazzacano, A. Mereghetti, E. Metral, S. Redaelli, B. Salvant, 7th HL-LHC Collaboration meeting, CIEMAT, Madrid – 15.11.17 (Nov. 2017)

5

Requirement Summary

- 760 MHz beam HOM power <1kW</p>
- Transverse impedance < $1M\Omega$ /m
- HOM Filters Output Power $\leq 1.5 W$ at 400.79 MHz
- Longitudinal HOM shunt impedance $R_{sh} < 200 \text{ k}\Omega$
- Field multipole of operating mode
 Most important, sextupole $b_3 < 1000 \text{ mT/m}^2$ at total
 10MV deflection voltage

Minimizing 760 MHz Mode beam power, by detuning HOM frequency farther off beam resonance

Beam line spacing: 40.079 MHz, 19th harmonic at 761.5 MHz

- Various options explored to detune the 760 mode
- Approach adopted: reducing gap volume around beam pipe region
 - 400 MHz dipole and 760 MHz monopole modes opposite in dF sensitivity
 - Iowers frequency of 760 mode (target: |dF| > 6MHz)

- Operating mode frequency
- tuned to 400.79 MHz by adjusting rounding "R" by -1.76mm

Achieved -9 MHz detuning of the 760 MHz mode from beam resonance of 761.5MHz

New frequency of this longitudinal HOM : 752.2 MHz

Beam HOM Power Reduced from ~10kW to ~ 500W

- HOM power calculated for 1-AM beam
- *σ_z*=76mm

Beam HOM power below 1 kW. Meet design requirement.

8

New Design Parameter Comparison

RFD Crab Cavity				
	LARP Prototype	New Design		
Frequency (MHz)	400.79	400.79		
Lowest dipole HOM (MHz)	633	636		
Lowest acc HOM	715	699		
High R/Q acc HOM	760.9	752.2		
Transverse dimension (mm)	281	281		
Vertical dimension (mm)	281	281		
R _T (ohm/cavity)	427	431		
V _T (MV/cavity)	3.34	3.34		
Bs (mT)	55.5	55.1		
Es (MV/m)	32.6	35.0		

• Frequency of high beam power mode (760MHz) 9.3 MHz below beam resonance

Good RF parameters maintained

Multipole B₃, B₅, B₇

Assume Def mode symmetry (only cos term)

$$\begin{split} E_{acc}(r,\varphi) &= \sum_{n} E_{acc}^{n} r^{n} \cos(n\varphi) \qquad (e^{j\omega z.c} \text{ included in } E_{acc}^{n}) \\ \Delta \vec{p}_{\perp}^{(n)}(r,\varphi) &= \frac{1}{c} \int_{0}^{L} F_{\perp} dz = \frac{je}{\omega} nr^{n-1} (\hat{u}_{r} \cos(n\varphi) + \hat{u}_{\varphi} \sin(n\varphi)) \int_{0}^{L} E_{acc}^{n}(z) dz \\ b_{n} &= \int_{0}^{L} B^{(n)} dz = \frac{1}{ec} \int_{0}^{L} F_{\perp}^{(n)} dz = \frac{nj}{\omega} \int_{0}^{L} E_{acc}^{(n)} dz \\ \Delta \vec{p}_{\perp}^{(n)}(r,\varphi) &= e \vec{V}_{T}(r,\varphi) = e \sum_{n} b_{n} r^{n-1} (\hat{u}_{r} \cos(n\varphi) + \hat{u}_{\varphi} \sin(n\varphi)) \\ V_{def} &= b_{1} \end{split}$$

Multipole components barely changed as compared with LARP prototype design
 b3 < 1000 mT/m², meet design requirement

HOM Impedance Improvements

- Cavity shape modification altered the damping of HOM
- Re-optimized both H-HOM and V-HOM couplers
- Simplified port interface

H-HOM Coupler Cutoff waveguide stub + high-pass filter

- mode
- HHOM coupler and filter in low field region minimizes RF heating
- Waveguide stub add additional rejection of operating mode loosening tolerance on filter dimensions

HHOM Coupler Modifications to Enhance Damping

V-HOM Coupler Cutoff waveguide stub + hook pickup

- Waveguide stub selectively couples to acc and vertical HOMs no filter needed
- Hook provides both electric and magnetic coupling, improving damping of HOMs at higher frequencies
- Waveguide stub dimension slightly larger, (same as HHOM), to enhance coupling

FPC and Field Pickup Port (minor location adjustment from the LARP prototype)

FPC:

- Waveguide stub + hook
- Qext: 5x10⁵

Pickup port:

- On the V-HOM side of cavity
- Need to pickup ~ 1.5W. Qext ~ 2x10¹⁰

Port Interface Simplified to Same Dimension

- Diameter for all ports, HHOM, VHOM, field pickup: 37.879 mm
- One feed through design for all ports

HOM Impedance of the New Design

HOM impedance below 1 M Ω /m up to 2 GHz Longitudinal shunt impedance < 200 k Ω Meet requirement

RF Heating of Coupler Elements

Power [W/(3.4MV/cavity]	LARP Prototype	AUP HL-LHC New Design	
FPC hook	69	73	Copper NC
H-HOM hook	0.0007	0.0014	Nb SC
V-HOM (probe) HOOK	0.47	0.51	Copper NC
Field pickup probe		0.09	Copper NC

Low RF heating on coupler elements No thermal issue

Multipacting

Cavity Dimension Sensitivity to HOM Impedances

- Assume depth of the pole kept unchanged
 - Pole gap change same amount as cavity transverse dimension
 - Resulted in very small frequency deviation

Cavity Transverse Size Error

x/ytank (+delta)

+0.75mm

F (GHz)

- Frequency offset within tuner range
- HOM Impedance maintained with a simple • mitigation by rotating VHOM hook angle

1.0E+08

1.0E+07

1.0E+06 1.0E+05

~ 1.0E+04

1.0E+03

1.0E+02 1.0E+01

1.0E+00

(VHOM coupler hook orientation rotated for a mode at above 2 GHz (2.05) for better damping)

HOM impedance maintained in $1M\Omega/m$ level with realistic cavity dimension error

End Plate Tilt Error

HOM impedance maintained in 1 M Ω /m level with realistic cavity dimension error

HOM Coupler Dimension Sensitivity to HOM Impedances and Operating Mode Rejection

V-HOM

- HOM damping
- Filter performance rejection of 400.79 MHz operating mode

HHOM coupler filter bar-gap

(design: bar_gap=2.8mm)

Impedance insensitive to bar gap error Filter bar-gap dimension error barely affect impedance

HHOM coupler filter tip-gap

(design: tip_gap=5mm)

Impedance insensitive to tip gap error Filter tip-gap dimension error barely affect impedance (Similarly with other filter dimension errors)

Power Leakage Due to HHOM Filter Dimension Errors

 Filter dimension errors may weaken rejection of operating mode, lead to RF power leakage

With achievable filter dimension tolerances, RF power leakage will be contained within 1.5 W

Dimension Error Mitigation

Dimension tolerance shown to be achievable There are readily available mitigation means could be utilized to further minimize dimension errors effects

-20

-40

-60

-80

-100

-120

-140 <u></u>.4

0.6

0.8

S21 (dB)

- Rotating, tweaking HOM coupling hook
 - Effective to cavity dimension errors
- Adjusting HHOM pickup probe depth/dimension
 - Effective to HOM coupler dimension errors

Example: adjusting HHOM tip-gap improves degraded rejection due to bar-gap error

1.2

F (GHz)

1.4

1.6

1.8

High-pass Filter Transmission

Desig dbargap=-0.2mr -0.2mm, dtipgap=-1 mr

dbargap=-0.2mm dbargap=-0.2mm, dtipgap=-1mm

Effect of dimension errors can be mitigated via re-tuning of demountable HOM couplers

Summary

RFD cavity was re-optimized to resolve two important design issues

1) Reduced beam HOM power of the "760MHz" mode

meet 1 kW requirement

2) Improved HOM damping

meet 1 M Ω /m requirement

- New design meet all requirements
 - \Box Accelerating mode shunt impedance: < 200 k Ω
 - □ Field multipole: b3 < 1000 mT/m²
 - HOM filter power leakage : can be controlled within 1.5 W limit
- Sensitivity of HOM impedance on cavity and HOM coupler dimensions analyzed
 - Tolerance on dimension errors achievable
 - Sensitivity table generated for developing engineering tolerance specifications

