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No sign of new physics at the LHC
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What could we be missing?
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Milli-charged particles
• Many SM extensions include “hidden” or “dark” sectors
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“Dark EM” Mixing of dark photon 
and SM photon

• Dark sector particles could acquire small SM charge through mixing

B′ B
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Searches for milli-charged particles
• Strong astrophysics constraints 

for millicharge particles < me  

• SLAC beam dump: m < 0.1 GeV 

• Collider searches: Q/e > 0.1 

• GeV range unprobed, and 
would be produced at LHC
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FIG. 7: Expected sensitivity for di↵erent LHC luminosity scenarios. The black line shows

the expected 95% C.L. exclusion (solid) and 3� sensitivity (dashed), assuming 300 fb�1 of

integrated luminosity. In blue we show the corresponding expectations for 3000 fb�1.

X. TIMELINE AND NEXT STEPS

We aim to have the experiment ready for physics during Run 3. To that end, we envisage

the following timeline:

• Construct small fraction of detector (⇠ 10%) in next 2 yrs

• Install partial detector in PX56 by end of Run 2 (YETS 2017 + TS in 2018)

• Commission and take data in order to evaluate beam-on backgrounds in situ

• Construction + Installation of remainder of detector during LS2 (2019–2020)

• Final commissioning by spring 2021

• Operate detector for physics for duration of Run 3 and HL-LHC (mid 2021–)

The next step in the milliQan project is to seek external funding to enable at least the

10% construction. No such funding has yet been secured for this project, but one or more

proposals to one or more funding agencies are being prepared for the near future.
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Detector to find millicharge particles
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• Looking for very weakly 
ionizing particles: need long 
path through active material 

• milli-Q signal: few scintillation 
photons in each layer 

• LHC backgrounds (muons): 
huge signals, easy to reject 

• Require coincidence in three 
layers to remove random 
backgrounds

1m

Scintillator
PMTs
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Proposed location
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LHC beam

CMS

Interaction 
point

milliQan

• 15 m of rock between 
milliQan and CMS: 
few beam particles
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1% prototype
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PMTs

Plastic scintillator

Lead shielding

Hodoscope

Support structure

(BC408: 80 x 5 x 5 cm3)

CAEN V1743 digitizer
16 chan, 1.6 GS/s, 

640 ns window 
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PMTs
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Hamamatsu R7725 Electron Tube 9814B

High gain, fast PMTs 
($$) Older, slower PMTs 

(effectively free!)

Hamamatsu R878
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Module assembly
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Setup and installation at CERN
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Lowering down the shaft
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Finished prototype
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Key calibration questions
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David Stuart, UCSB 

Plan for characterization
Want to measure gain & single photon size for each PMT.   
Exploring using the following techniques: 

1). Measure gain by using a (stably configured) PMT on one end to 
trigger and measure pulse height for each event while varying HV on a 
test PMT coupled to the other end. Removable optical coupling made 
with optical gel sheet from (EJ-560). 

2). Measure single photon size by replacing optical gel with an opaque 
mask having a small hole to reduce light transmission. With typical  
signal sizes of O(10k) photons typical for a cosmic, a ~ 1 mm2  
hole, e.g., a pinhole, gives appropriate suppression. 

Last month, I tested this successfully using SiPMs instead of PMTs. 
Now try it using OSU’s R878 PMTs and a smaller scintillator bar.

Tag PMT Probe PMT

2

milli-charged particle

What does a single 
photoelectron look like?

How many photons 
are collected?
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Finding single photoelectrons
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scintillator

masked PMT unmasked PMT 

• Special configuration: two PMTs 
on one bar 

• Trigger on large pulse, look for 
SPEs in masked tube

Trigger

SPE

Bench setup at UCSB

m
V

ns
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Finding single photoelectrons
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Trigger

3+ PE

Trigger

2+ PE

m
V
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m
V
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Charge distributions
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1 peak 
2 peaks 
3+ peaks

• Peakfinding easily reveals SPE spectrum 

• Validate other SPE sources:              
thermal SPEs, early afterpulses

Pulse area (nVs)

Each peak offset by SPE gain, ~0.07 nVs
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Pulses in milliQan
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Run 70, File 6, Event 6300 (beam off)

= 2pulsesChannel 2, N
297 ns: 9.0 mV, 57 pVs, 9 ns
444 ns: 12 mV, 75 pVs, 11 ns

Run 70, File 6, Event 6300 (beam off)

Hamamatsu R7725, 1600 V

Arrival time: height, 
area, pulse duration

Channel map

Electron tube 9814B, 1600 V
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SPE measurement
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SPE measurement
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SPE measurement
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SPE measurement

21

Time [ns]
300 350 400 450 500

Am
pl

itu
de

 [m
V]

0

5

10

15

20

25

30
Run 70, File 6, Event 6300 (beam off)

= 2pulsesChannel 2, N
297 ns: 9.0 mV, 57 pVs, 9 ns
444 ns: 12 mV, 75 pVs, 11 ns

Run 70, File 6, Event 6300 (beam off)

Pulse area [pVs]
0 50 100 150 200 250 300

Pu
ls

es

100

200

300

400

500

600

700

Run 70, Channel 2, 1600 V

First pulses

Afterpulses

Cleaned afterpulses

 0.4 pVs±Mean: 64.4 

Run 70, Channel 2, 1600 V

First pulses (trigger) 
Late pulses 
Cleaned late pulses (quiet for previous 20ns)

Pulse area [pVs]

Pu
ls

es

Mean = 64.4 pVs

Electron tube 9814B, 1600 V



Ryan Heller, UC Santa Barbara

SPE measurement
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First pulse: susceptible to sculping by trigger
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SPE measurement
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Light yield calibration
• How many photons do we collect for given energy deposition? 

• Gamma sources:  

• well-known energy, high rate 

• logistically difficult 

• Cosmic muons:  

• always there 

• low rate, unknowns: angle of incidence, presence of secondaries 

• Ideally use both: source calibration when possible, monitor with cosmics
24
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Cosmic events
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Run 172, File 108, Event 3022 (beam off)

ET 9814B, 1000 VHamamatsu R878, 1000 V

Have to turn voltage way down to measure cosmics (1600 V → 1000 V)
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Cosmic charge measurement
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Cosmic charge measurement
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Extracting cosmic light yield
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Extracting cosmic light yield
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• Can’t measure cosmic and SPE 
at single HV 

• Scale cosmic yields by NPE 

• 3-parameter fit:                    
slope, intercept, NPE
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Cosmic light yields
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Cosmic light yields
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Trigger rate spike
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Lumisection

3-coincidence trigger rate (Hz)
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Trigger rate spike
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Lumisection

3-coincidence trigger rate (Hz) CMS magnetic field (T)



Ryan Heller, UC Santa Barbara

Magnetic field and trigger rate

34
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Cosmic monitoring before/after
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High gain R7725s in B-field
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Noise triggers from huge pulses
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Hodoscope

Each pack
4x2 bars of 2x2x50cm

9 cm

4.
5 

cm

50 cm

38

• Tracking hodoscope:       
narrow scintillators+ SiPMs 

• Many uses: 

• Alignment check 

• Event characterization 
(identify showers) 

• Active veto
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Muons in hodoscope
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Hodoscope: backup luminometer
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Measure hodoscope muon rate
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chi2/ndf=74.6/67
• Plot Nmuons vs luminosity for 

each fill 

• Extract rate: 0.18 muons / pb-1
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Measure hodoscope muon rate
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chi2/ndf=74.6/67

• Measured rate: 0.18 / pb-1 

• Expected rate: 0.22 / pb-1
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LHC fill integrated luminosity [pb-1] 

Simulate propagation of 
muons from CMS

QCD
After 

propagation
Before 

propagation
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Luminosity leveling
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Time since start of fill [hours]
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Luminosity leveling
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M. Citron mcitron@ucsb.edu

• Separated by ~15ns  

• Expect (+ve) shift of 2.2*2/0.3 ~ 15ns 

• NB assuming muon moves at c in bar

13

Delta Mean (beam on, double gaussian)

~2.2m t1

t2

t1

t2
3

2

1

Discovering the beam

45
M. Citron mcitron@ucsb.edu 11
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MinIf$(time_module_calibrated,(((chan==8||chan==9)&&nPE>=200)||((chan==11||chan==10)&&nPE>=75)))-MinIf$(time_module_calibrated,(layer==1&&nPE>=200)) {MinIf$(time_module_calibrated,((chan==8||chan==9)&&nPE>=200)||((chan==11||chan==10)&&nPE>=75))>0&&MinIf$(time_module_calibrated,layer==1&&nPE>=200)>0&&!beam}

noBeam
Entries  673
Mean  5.053− 
Std Dev     6.873

MinIf$(time_module_calibrated,(((chan==8||chan==9)&&nPE>=200)||((chan==11||chan==10)&&nPE>=75)))-MinIf$(time_module_calibrated,(layer==1&&nPE>=200)) {MinIf$(time_module_calibrated,((chan==8||chan==9)&&nPE>=200)||((chan==11||chan==10)&&nPE>=75))>0&&MinIf$(time_module_calibrated,layer==1&&nPE>=200)>0&&!beam}

Nicely gaussian behaviour  
(mean != 0 explanation in backup)

Beam off: Layer 3 time - layer 1 time

Δt (ns)ΔΤ (layer 3 - layer 1) [ns]

Downward 
cosmic muons

2.2 m path length between layer 1 
and 3 

Expected time difference between 
upward and downgoing muons: 

2.2 m x 2 / 0.3 m/ns = 15 ns

Beam off
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Discovering the beam
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MinIf$(time_module_calibrated,((chan==8||chan==9)&&nPE>=200)||((chan==11||chan==10)&&nPE>=75))-MinIf$(time_module_calibrated,(layer==1&&nPE>=200)) {MinIf$(time_module_calibrated,((chan==8||chan==9)&&nPE>=200)||((chan==11||chan==10)&&nPE>=75))>0&&MinIf$(time_module_calibrated,layer==1&&nPE>=200)>0&&beam}

beam
Entries  1769
Mean  1.956− 
Std Dev     8.824

MinIf$(time_module_calibrated,((chan==8||chan==9)&&nPE>=200)||((chan==11||chan==10)&&nPE>=75))-MinIf$(time_module_calibrated,(layer==1&&nPE>=200)) {MinIf$(time_module_calibrated,((chan==8||chan==9)&&nPE>=200)||((chan==11||chan==10)&&nPE>=75))>0&&MinIf$(time_module_calibrated,layer==1&&nPE>=200)>0&&beam}

Double gaussian for beam/non beam component  
 → time allows strong non-beam background rejection

Beam on: Layer 3 time - layer 1 time

Beam on

M. Citron mcitron@ucsb.edu

• Separated by ~15ns  

• Expect (+ve) shift of 2.2*2/0.3 ~ 15ns 

• NB assuming muon moves at c in bar

13

Delta Mean (beam on, double gaussian)

~2.2m t1

t2

t1

t2
3

2

1

Time difference for beam 
muons is 15 ns! Downward 

cosmic muons

Upward beam 
muons

ΔΤ (layer 3 - layer 1) [ns]
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Run 59, File 15, Event 8959 (beam off)

= 1pulsesChannel 4, N
180 ns: 7.3 mV, 4.6 PE, 38 ns

= 1pulsesChannel 6, N
188 ns: 6.3 mV, 3.8 PE, 34 ns

Run 59, File 15, Event 8959 (beam off)
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Run 59, File 15, Event 9316 (beam off)

= 2pulsesChannel 1, N
191 ns: 20 mV, 3.6 PE, 25 ns
230 ns: 10 mV, 0.8 PE, 9 ns

= 2pulsesChannel 3, N
188 ns: 8.5 mV, 1.9 PE, 16 ns
205 ns: 7.8 mV, 1.0 PE, 9 ns

Run 59, File 15, Event 9316 (beam off)
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Fill with largest pulse from each channel

Coincidence peaks at 1 photon, tail to 25+ 
Adjacent bar coincidence rate is 50-100 Hz! 

Layer crossing is very rare, but likely a major contribution to milli-charge background
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Run 59, File 15, Event 9316 (beam off)

= 2pulsesChannel 1, N
191 ns: 20 mV, 3.6 PE, 25 ns
230 ns: 10 mV, 0.8 PE, 9 ns

= 2pulsesChannel 3, N
188 ns: 8.5 mV, 1.9 PE, 16 ns
205 ns: 7.8 mV, 1.0 PE, 9 ns

Run 59, File 15, Event 9316 (beam off)
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Jae$Hyeok$Yoo$(UCSB) No$mee2ng$(02/15/2018) 1

slab1

slab2

slab3

2x3

2x3

2x3

2x3$configura-on$$
@ 2x2$configura2on$not$touched$except$for$the$ch8$and$

ch9$
@ ch8$bar$and$ch9$bar$switched$
@ R7725$on$ch8$replaced$with$R878$

@ moved$sidecar$bars$to$the$top$right$side$of$each$layer$
@ sidecar$support$removed$

@ added$new$bars$to$the$top$leP$side$of$each$layer$
@ BoQom$layer:$OSU$bars$
@ Middle$and$top$layers:$UCSB$bar+PMTs

Slabs$
@ L@shape$support$for$slab$2$and$3$made$by$Rob$$
@ no$support$for$slab1$because$it$fits$nicely$between$HS$

packs$and$MQ$bars:$puZng$some$tape$would$be$enough$
@ slab4$(top,$not$shown$in$the$photo)$needs$a$mount$that$

Rob$will$make$

HV$spli6ers$
@ Moved$down$below$the$table$to$give$space$for$panels$
@ ET$box$under$boQom$layer$and$R878/R7725$boxes$under$

top$and$middle$layers

Br
ia
n

Hodoscope$
@ Added$one$horizontal$pack$to$boQom$HS$$
@ Added$one$ver2cal$pack$to$top$HS

Active shielding slabs:  
neutron moderator  

tag radioactivity

Additional channels (1.5% prototype)
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Prototype upgrades
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Hermetic veto panels 
tag cosmic showers

side view

Improved magnetic shielding 
and monitoring

Additional hodoscope 
channels 

tag specific cosmic 
trajectories
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Other avenues for background reduction
• Correlated radioactivity across layers: 

• Increase lead shielding 

• Random coincidence of thermal SPEs: 

• Cooling 

• Add PMT at both ends of bar! 

• Targetting Q ≥ 0.01: use cheaper PMTs 

• Improves time/energy resolution as well

51
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milliQan Collaboration
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milliQan Collaboration 

Ohio State, UCSB, CERN, Bristol, Lebanon, KIT, NYU, Chicago, Perimeter, BNL 

Claudio  
Campagnari 

David 
Stuart 

Jim Brooke 

David Miller 
Ralf Ulrich 

Itay Yavin Eder Izaguirre 

…plus many fantastic postdocs and students! 
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Conclusion
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• Very optimistic about first 
results from prototype 

• Learning valuable 
information about 
backgrounds and 
operation of detector 

• Many interesting ideas to 
explore for the full 
experiment!

Max 
Swiatlowski

Brian 
Francis 

Josh De 
La Haye

Matthew 
Citron

Jae Hyeok 
Yoo
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Prospects for general-purpose detector search

• Less than Q/e = 0.1: invisible to CMS/ATLAS 

• Classic dark matter search: look for unbalanced 
momentum from hadronic recoil

55

• Key problem: huge background from Z → νν 

• millicharge S/B ~ 1/1000, and  σ(B) ~ 10% 

• Unlikely to see sensitivity at traditional LHC 
experiments

Z → νν

Missing momentum [GeV]

JetInvisible
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Further PMT bench studies
• Planning SPE measurement with dim LED
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Further PMT bench studies
• Planning SPE measurement with dim LED
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digitizers are triggered when the signal reaches about 0.25 times
the typical SPE peak amplitude, after which the PMT output
waveform is digitized for up to 6:4ms. The detection efficiency for
single photons depends directly on the fraction of the SPE charge
distribution above trigger threshold. For high energy neutrino
events, many waveforms show contributions from multiple
photons, all of which could provide useful information during
event reconstruction. The overall light yield provides an estimate
of the neutrino energy, and the space and time distribution of
light helps to reconstruct direction and reject backgrounds. The
time distribution of photons can be extracted from each PMT
waveform if the response to single photons is well understood.
The response to each photon is approximately given by the
average SPE waveform, scaled randomly according to the
complete charge probability distribution.

In order to mimic the ambient temperature in the ice, PMTs
were placed in a freezer box at !32 3C and illuminated by diffused
light from a 375 nm UV LED. The light was generated in 10 ns
pulses with intensity of about 0.1 photons per shot (" 0:02
photoelectrons per shot), dim enough to initiate only SPE signals.

Fig. 3 shows the average SPE waveform, measured at the
output of the AC coupling transformer with a digital storage
oscilloscope (LeCroy LT374, 500 MHz bandwidth, 0.5 ns samples).
Here the 95O input impedance of the DOM’s front end amplifier
was replaced by the series combination of a 50O resistor and the
oscilloscope input.

Individual waveforms have different amplitudes but their
shapes are similar to within a few percent. The waveform is
dominated by a peak of Gaussian shape (s¼ 3:2 ns) which
accounts for 83% of the area. A tail on the late side of the peak
accounts for the remaining area and exhibits a small amount of
ringing. About 90% of the charge is collected before 10 ns after the
peak. A substantial part of the observed pulse width is attributed
to the damping resistors and the coupling transformer (Section 5).

To study the total charge in SPE events, a computer-controlled
integrating ADC module (LeCroy 2249A) was used to integrate
charge in a 70 ns window, triggered by the synchronization signal
of the LED pulse generator. Fig. 4 shows a typical charge
histogram, which exhibits a clear SPE peak to the right of the
pedestal peak. The Gaussian part of the SPE peak corresponds to a
charge resolution of approximately 30%.

The non-Gaussian component rising below 0.3 times the SPE
charge in Fig. 4 has been studied to verify that such small pulses
actually reflect in-time detection of photons, and not accidental

coincidences of noise pulses such as from thermionic emission at
the dynodes. The check for a noise contribution was done with the
LED light output disabled (but not the synchronization signal that
triggers acquisitions); all counts outside the narrow pedestal
region were greatly suppressed compared to Fig. 4.

The low-charge component has been described in the past for
many PMTs [21], and has been attributed to a sizable probability
for backscattering of the primary photoelectron at the first
dynode [22,23], leading to events where only a few secondaries
are produced instead of the usual 10–20.

The shape of the low-charge component is important because
even small pulses below the DOM’s trigger threshold will be
recorded in events with multiple photoelectrons. Therefore event
reconstruction should account for the entire charge probability
distribution down to zero charge, which we model as a Gaussian
plus an exponential term [21]:

f ðqÞ ¼
Pe

qt
exp !

q
qt

! "
þð1!PeÞ

1ffiffiffiffiffiffi
2p
p

sq

exp !
ðq!q0Þ2

2s2
q

" #

: ð1Þ

Here Pe is the fraction of events in the low-charge exponential
part, q0 is the charge at the SPE peak which defines the PMT gain,
sq is the width of the Gaussian fit around the SPE peak, and qt is
the decay constant in the exponential component. Fig. 4 shows
that this is a good model for the shape of the charge histogram
away from the pedestal.

Fig. 5 shows results of fitting equation (1) for a large sample of
PMTs at different gains above 5'107, excluding the very low
charge region qo0:15q0 and the very high charge region more
than 2s past the peak. The value of qt=q0 is substantially
degenerate with Pe for describing observed spectra in the fitted
range, so it has been fixed at the representative value of 0.20. The
scaled quantities sq=q0, qt=q0, and Pe are found not to vary
strongly with the PMT gain. The very small pulses with qo0:15q0

were omitted to avoid confusion with the tail of the pedestal
distribution; results were the same if the low-charge cut was
moved to 0.25q0. The charge resolution sq=q0 has been separately
studied for gains between 107 and 108 and again no significant
variations were seen.

Fig. 5 also shows the spread in parameters from PMT to PMT.
The distribution in each parameter is approximately Gaussian,
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Fig. 4. Typical pedestal-subtracted SPE charge histogram at gain 5' 107,
including pedestal peak. Fits refer to Eq. (1), with the constraint qt=q0 ¼ 0:2. The
remaining parameters are optimized to fit this histogram for the curve labeled
‘‘Model’’, while ‘‘Model (Scaled)’’ optimizes only the scale parameter q0 while
holding sq=q0 and Pe at values that describe the average of 120 PMTs.
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Fig. 5. Scaled parameters from Eq. (1) as a function of PMT gain. The error bars
show the 1s spread in parameters obtained for a sampling of 115 PMTs.

R. Abbasi et al. / Nuclear Instruments and Methods in Physics Research A 618 (2010) 139–152144
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IceCube PMT calibration
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Result from IceCube PMTs

https://www.sciencedirect.com/science/article/pii/S0168900210006662?via=ihub
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• Planning SPE measurement with dim LED
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digitizers are triggered when the signal reaches about 0.25 times
the typical SPE peak amplitude, after which the PMT output
waveform is digitized for up to 6:4ms. The detection efficiency for
single photons depends directly on the fraction of the SPE charge
distribution above trigger threshold. For high energy neutrino
events, many waveforms show contributions from multiple
photons, all of which could provide useful information during
event reconstruction. The overall light yield provides an estimate
of the neutrino energy, and the space and time distribution of
light helps to reconstruct direction and reject backgrounds. The
time distribution of photons can be extracted from each PMT
waveform if the response to single photons is well understood.
The response to each photon is approximately given by the
average SPE waveform, scaled randomly according to the
complete charge probability distribution.

In order to mimic the ambient temperature in the ice, PMTs
were placed in a freezer box at !32 3C and illuminated by diffused
light from a 375 nm UV LED. The light was generated in 10 ns
pulses with intensity of about 0.1 photons per shot (" 0:02
photoelectrons per shot), dim enough to initiate only SPE signals.

Fig. 3 shows the average SPE waveform, measured at the
output of the AC coupling transformer with a digital storage
oscilloscope (LeCroy LT374, 500 MHz bandwidth, 0.5 ns samples).
Here the 95O input impedance of the DOM’s front end amplifier
was replaced by the series combination of a 50O resistor and the
oscilloscope input.

Individual waveforms have different amplitudes but their
shapes are similar to within a few percent. The waveform is
dominated by a peak of Gaussian shape (s¼ 3:2 ns) which
accounts for 83% of the area. A tail on the late side of the peak
accounts for the remaining area and exhibits a small amount of
ringing. About 90% of the charge is collected before 10 ns after the
peak. A substantial part of the observed pulse width is attributed
to the damping resistors and the coupling transformer (Section 5).

To study the total charge in SPE events, a computer-controlled
integrating ADC module (LeCroy 2249A) was used to integrate
charge in a 70 ns window, triggered by the synchronization signal
of the LED pulse generator. Fig. 4 shows a typical charge
histogram, which exhibits a clear SPE peak to the right of the
pedestal peak. The Gaussian part of the SPE peak corresponds to a
charge resolution of approximately 30%.

The non-Gaussian component rising below 0.3 times the SPE
charge in Fig. 4 has been studied to verify that such small pulses
actually reflect in-time detection of photons, and not accidental

coincidences of noise pulses such as from thermionic emission at
the dynodes. The check for a noise contribution was done with the
LED light output disabled (but not the synchronization signal that
triggers acquisitions); all counts outside the narrow pedestal
region were greatly suppressed compared to Fig. 4.

The low-charge component has been described in the past for
many PMTs [21], and has been attributed to a sizable probability
for backscattering of the primary photoelectron at the first
dynode [22,23], leading to events where only a few secondaries
are produced instead of the usual 10–20.

The shape of the low-charge component is important because
even small pulses below the DOM’s trigger threshold will be
recorded in events with multiple photoelectrons. Therefore event
reconstruction should account for the entire charge probability
distribution down to zero charge, which we model as a Gaussian
plus an exponential term [21]:
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Here Pe is the fraction of events in the low-charge exponential
part, q0 is the charge at the SPE peak which defines the PMT gain,
sq is the width of the Gaussian fit around the SPE peak, and qt is
the decay constant in the exponential component. Fig. 4 shows
that this is a good model for the shape of the charge histogram
away from the pedestal.

Fig. 5 shows results of fitting equation (1) for a large sample of
PMTs at different gains above 5'107, excluding the very low
charge region qo0:15q0 and the very high charge region more
than 2s past the peak. The value of qt=q0 is substantially
degenerate with Pe for describing observed spectra in the fitted
range, so it has been fixed at the representative value of 0.20. The
scaled quantities sq=q0, qt=q0, and Pe are found not to vary
strongly with the PMT gain. The very small pulses with qo0:15q0

were omitted to avoid confusion with the tail of the pedestal
distribution; results were the same if the low-charge cut was
moved to 0.25q0. The charge resolution sq=q0 has been separately
studied for gains between 107 and 108 and again no significant
variations were seen.

Fig. 5 also shows the spread in parameters from PMT to PMT.
The distribution in each parameter is approximately Gaussian,
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Fig. 4. Typical pedestal-subtracted SPE charge histogram at gain 5' 107,
including pedestal peak. Fits refer to Eq. (1), with the constraint qt=q0 ¼ 0:2. The
remaining parameters are optimized to fit this histogram for the curve labeled
‘‘Model’’, while ‘‘Model (Scaled)’’ optimizes only the scale parameter q0 while
holding sq=q0 and Pe at values that describe the average of 120 PMTs.
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Fig. 5. Scaled parameters from Eq. (1) as a function of PMT gain. The error bars
show the 1s spread in parameters obtained for a sampling of 115 PMTs.
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Geant simulation of photon propagation in bar
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Throughgoing muons
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