The milliQan Experiment at the LHC

Ryan Heller University of California, Santa Barbara

Research Techniques Seminar February 27th, 2018

No sign of new physics at the LHC

What could we be missing?

Milli-charged particles

Many SM extensions include "hidden" or "dark" sectors •

$$\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{4} B'_{\mu\nu}$$

Dark sector particles could acquire small SM charge through mixing

Searches for milli-charged particles

- Strong astrophysics constraints for millicharge particles $< m_{\rm e}$
- SLAC beam dump: m < 0.1 GeV
- Collider searches: Q/e > 0.1
- GeV range unprobed, and would be produced at LHC

Detector to find millicharge particles

Ryan Heller, UC Santa Barbara

1m

- Looking for very weakly ionizing particles: need long path through active material
- milli-Q signal: few scintillation photons in each layer
- LHC backgrounds (muons): huge signals, easy to reject
- Require coincidence in three layers to remove random backgrounds

Proposed location

 15 m of rock between milliQan and CMS: few beam particles

1% prototype

CAEN V1743 digitizer

16 chan, 1.6 GS/s, 640 ns window

PMTs

Older, slower PMTs (effectively free!)

Hamamatsu R878

Module assembly

Setup and installation at CERN

Lowering down the shaft

Finished prototype

What does a single photoelectron look like?

Ryan Heller, UC Santa Barbara

Key calibration questions

How many photons are collected?

milli-charged particle

13

Finding single photoelectrons

Bench setup at UCSB

- Special configuration: two PMTs on one bar
- Trigger on large pulse, look for SPEs in masked tube

ns

14

Finding single photoelectrons

ns

Charge distributions

- Peakfinding easily reveals SPE spectrum
- Validate other SPE sources: thermal SPEs, early afterpulses

16

Hamamatsu R7725, 1600 V

Pulses in milliQan

Ryan Heller, UC Santa Barbara

First pulse: susceptible to sculping by trigger

Hamamatsu R878, 1450 V

Hamamatsu R7725, 1600 V

Starting bench study to understand 2 strange PMTs

Light yield calibration

- How many photons do we collect for given energy deposition?
 - Gamma sources:
 - well-known energy, high rate
 - logistically difficult
 - **Cosmic muons:**
 - always there
- Ideally use both: source calibration when possible, monitor with cosmics

low rate, unknowns: angle of incidence, presence of secondaries

24

Hamamatsu R878, 1000 V

Have to turn voltage way down to measure cosmics (1600 V \rightarrow 1000 V)

Cosmic events

ET 9814B, 1000 V

Cosmic charge measurement

ET 9814B, 1000 V

Cosmic charge measurement

Ryan Heller, UC Santa Barbara

ET 9814B, 1000 V

Extracting cosmic light yield

High voltage [V]

Extracting cosmic light yield

- Can't measure cosmic and SPE at single HV
- Scale cosmic yields by NPE
- 3-parameter fit: slope, intercept, N_{PE}

High voltage [V]

O(5000) photons for vertical muon

Cosmic light yields

O(5000) photons for vertical muon

Cosmic light yields

Q=0.01: ~5 photons **Q=0.005**: ~1 photon

3-coincidence trigger rate (Hz)

Lumisection

Trigger rate spike

3-coincidence trigger rate (Hz)

Lumisection

Trigger rate spike

2017.11.30 08:00:00 - 2017.12.01 08:00:00 (UTC)

Magnetic field and trigger rate

Cosmic monitoring before/after

High voltage [V]

Residual magnetic field reduced collection efficiency! SPE charge unaffected

Ryan Heller, UC Santa Barbara

High voltage [V]

High gain R7725s in B-field

Much more dramatic effect in R7725s

Noise triggers from huge pulses

Hodoscope

- Tracking hodoscope: narrow scintillators+ SiPMs
- Many uses:
 - Alignment check
 - Event characterization (identify showers)
 - Active veto

Muons in hodoscope

Hodoscope: backup luminometer

Measure hodoscope muon rate

chi2/ndf=74.6/67

- Plot N_{muons} vs luminosity for each fill
- Extract rate: 0.18 muons / pb⁻¹

900

41

Measure hodoscope muon rate

chi2/ndf=74.6/67

Simulate propagation of muons from CMS

Expected rate: 0.22 / pb⁻¹

42

Luminosity leveling

CMS Online Lumi

Luminosity leveling

44

Discovering the beam

Discovering the beam

Radioactive background

Radioactive background

Fill with largest pulse from each channel

Coincidence peaks at 1 photon, tail to 25+ Adjacent bar coincidence rate is 50-100 Hz!

Layer crossing is very rare, but likely a major contribution to milli-charge background

Prototype upgrades

Active shielding slabs:

neutron moderator tag radioactivity

Additional channels (1.5% prototype)

49

Prototype upgrades

Additional hodoscope channels

tag specific cosmic trajectories

Ryan Heller, UC Santa Barbara

Hermetic veto panels tag cosmic showers

Improved magnetic shielding and monitoring

Other avenues for background reduction

- Correlated radioactivity across layers:
 - Increase lead shielding
- Random coincidence of thermal SPEs:
 - Cooling
 - Add PMT at both ends of bar!
 - Targetting $Q \ge 0.01$: use cheaper PMTs
 - Improves time/energy resolution as well

51

milliQan Collaboration

David Stuart

Campagnari

Claudio

HE UNIVERSITY OF CAGO

David Miller

(CERN)

Rob Loos

Martin Gastal Albert de Roeck

Jim Brooke

PERIMETER

INSTITUTE FOR THEORETICAL PHYSICS

Itay Yavin

Eder Izaguirre

Ralf Ulrich

Conclusion

Ryan Heller, UC Santa Barbara

- Very optimistic about first results from prototype
- Learning valuable information about backgrounds and operation of detector
- Many interesting ideas to explore for the full experiment!

53

Prospects for general-purpose detector search

• Less than Q/e = 0.1: invisible to CMS/ATLAS

Classic dark matter search: look for unbalanced momentum from hadronic recoil

• Key problem: huge background from $Z \rightarrow vv$

millicharge S/B ~ 1/1000, and $\sigma(B) \sim 10\%$

Unlikely to see sensitivity at traditional LHC experiments

55

Further PMT bench studies

Planning SPE measurement with dim LED

Further PMT bench studies

Planning SPE measurement with dim LED

Charge (pC)

IceCube PMT calibration

Further PMT bench studies

Planning SPE measurement with dim LED

IceCube PMT calibration

Geant simulation of photon propagation in bar

Shoot 3 GeV muon at bar, perpendicular

Signal with few photons: sample this distribution a few times Dispersion in time over ~10 ns

