Fermilab Dus. Department of Science

Energy Frontier Science: Circular Colliders and Muon Collider

Anadi Canepa, Dimitri Denisov, Patty Fox, Sergei Nagaitsev

Strategic Group on the Energy Frontier March 9th 2018

New Era for Fundamental Physics

- The discovery of the Higgs boson represents a historical moment and remarkable achievement in particle physics
 - It demonstrates that we have a correct effective theory to describe all known fundamental particles
- The Higgs discovery is also the dawn of a new era for fundamental physics
 - when we address fundamental questions related to the dynamics of EWKSB, dark sector, neutrino masses, naturalness, unification, ...
- What are the main paths forward in the exploration of the unknown?
 - Continue probing the energy frontier
 - by extending the mass reach
 - Exploiting the "Higgs as a tool for discovery"
 - Since the Higgs boson is a neutral scalar and it can interact with new particles we may not otherwise detect, a precision measurement program of its properties offers a portal to BSM
 - Mapping the Higgs potential can shed light on how the EWK phase transition occurred in the early Universe and the origin of the matterantimatter asymmetry

Circular Machines (at CERN)

pp-collider and ee-collider

ep-collider and eA-collider

Hadron Machines (at CERN): LHC, HL-LHC, FCC-hh

parameter	FCC	hh	HE-LHC	HL-LHC	LHC
collision energy cms [TeV]	100		27	14	14
dipole field [T]	16		16	8.33	8.33
circumference [km]	97.75		26.7	26.7	26.7
beam current [A]	0.5		1.12	1.12	0.58
bunch intensity [10 ¹¹]	1	1 (0.2)	2.2 (0.44)	2.2	1.15
bunch spacing [ns]	25	25 (5)	25 (5)	25	25
synchr. rad. power / ring [kW]	2400		101	7.3	3.6
SR power / length [W/m/ap.]	28.4		4.6	0.33	0.17
long. emit. damping time [h]	0.54		1.8	12.9	12.9
beta* [m]	1.1	0.3	0.25	0.20	0.55
normalized emittance [µm]	2.2 (0.4)		2.5 (0.5)	2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	5	1
events/bunch crossing	170	1k (200)	~800 (160)	135	27
stored energy/beam [GJ]	8.4		1.3	0.7	0.36

Wine and Cheese by Michelangelo Mangano:

https://indico.fnal.gov/event/10682/session/11/contribution/22/material/slides/0.pdf FCC Weeks: <u>https://indico.cern.ch/category/5225/</u>

Electron-proton Machines (at CERN): LHeC, ep at HL, HE, FCC

parameter [unit]	LHeC CDR	ep at HL-LHC	ep at HE-LHC	FCC-he
$E_p \; [\text{TeV}]$	7	7	12.5	50
$E_e [\text{GeV}]$	60	60	60	60
$\sqrt{s} [\text{TeV}]$	1.3	1.3	1.7	3.5
bunch spacing [ns]	25	25	25	25
protons per bunch $[10^{11}]$	1.7	2.2	2.5	1
$\gamma \epsilon_p \; [\mu \mathrm{m}]$	3.7	2	2.5	2.2
electrons per bunch $[10^9]$	1	2.3	3.0	3.0
electron current [mA]	6.4	15	20	20
IP beta function β_p^* [cm]	10	7	10	15
hourglass factor H_{geom}	0.9	0.9	0.9	0.9
pinch factor H_{b-b}	1.3	1.3	1.3	1.3
proton filling H_{coll}	0.8	0.8	0.8	0.8
luminosity $[10^{33} \text{cm}^{-2} \text{s}^{-1}]$	1	8	12	15

LHeC and FCC-eh Workshop

https://indico.cern.ch/event/639067

https://arxiv.org/abs/1211.5102

Electron-electron Machines (at CERN): FCC-ee

Parameter	FCC-ee			LEP ₂	
physics working point	Z	ww	ZH	tt _{bar}	
energy/beam [GeV]	~45.6	~80.5	~120	~175	~105
bunches/beam	70760	7280	826	64	4
bunch spacing [ns]	3.0	40	400	5000	22000
bunch population [10 ¹¹]	0.4	0.4	0.7	2.1	4.2
beam current [mA]	1400	150	30	6.4	3
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	137	16.5	4.9	1.4	0.0012
energy loss/turn [GeV]	0.036	0.34	1.71	7.72	3.34
synchrotron power [MW]	100			22	
RF voltage [GV]	0.25	0.8	3.0	9.5	3.5
Vs spread SR [%]	0.04	0.07	0.10	0.15	0.11
Vs spread SR+BS [%]	0.07	0.07	0.11	0.19	0.11

FCC Weeks https://indico.cern.ch/category/5225/

Muon Collider

Various proposals for a Higgs factory and/or a multi TeV discovery machine

Collider ring				
Circumference	350.0	m		
Nominal energy at H _o peak	125	GeV		
Nominal muon momentum	62.50	GeV/c		
Muons/bunch (each sign)	6×10^{12}	µ/bunch		
Final lifetime:	1.295	ms		
Mu decay length:	388.6	km		
Average number of turns:	1110.			
No effective luminosity turns:	555.2			
Crossings/sec: (at 15 hz)	8328.			
Beta value at crossing point	4.0	cm		
Indicative performance				
H _o peak cross section	2.00 x 10 ⁻³⁵	cm2		
Luminosity	$0.63 \ge 10^{32}$	cm-2 s-1		
H_o events/y (10^7 s)/ each cross:	12500 (*)			
H_o reduction due to finite $\Delta E/E$	0.5			
Bunch transv. rms size	197.5	microns		
Beam-beam tune shift	0.071			
Final bunch half-length	2.4	cm		
Final Δp muon	2.0	MeV/c		
Final $\Delta p/p$ muon	3.2 x 10 ⁻⁵			
rms $\Delta E/E$ at H _o resonance	2.4 x 10 ⁻⁵			

https://arxiv.org/pdf/1308.6612.pdf

http://iopscience.iop.org/article/10.1088/1748-0221/11/09/P09003/pdf

Parameter	Unit	Value
Beam energy	TeV	3.0
Number of IPs		2
Circumference	m	6302
β^*	cm	1
Tune x/y		38.23/40.14
Momentum compaction		-1.22E-3
Normalized emittance	mm∙mrad	25
Momentum spread	%	0.1
Bunch length	cm	1
Muons/bunch	10 ¹²	2
Repetition rate	Hz	15
Average luminosity	$10^{34}{\rm cm}^{-2}{\rm s}^{-1}$	7.1

<u>http://events.fnal.gov/colloquium/events/event/lucchesi-colloq-2018/</u>

https://indico.fnal.gov/event/7563/session/0/contribution/1/material/slides/1.pdf

https://arxiv.org/abs/1307.6129

https://arxiv.org/pdf/0711.4275.pdf

A few examples from the Higgs Precision Program - I

A few examples from the Higgs Precision Program - II

A few examples of Direct Searches for BSM

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/FutureHadroncollider

Organization

- Fermilab scientists are invited to participate in the long range planning for the laboratory research program in the post 2026-period
- The process includes:
 - The All-Scientist retreat on April 26, 2018
 - The submission of contributions to the White Papers foreseen in the context of the European Strategy planning effort (deadline Dec 2018)
 - Initial steps towards developing input to the P5 community planning process
- The Strategic Group for the Energy Frontier planned two meetings to discuss plans for the April 26 retreat
 - **Today**, the group conveners describe the White Papers foreseen and a suggested approach for contributions
 - **April 3rd**, scientists planning to join the studies will express their interest and a coherent plan for contributions from Fermilab is defined
- The group conveners will summarize the plans at the April 26 retreat
- A meeting of the strategic group will be held in late November / early December to review the results intended for submission to the White Papers Addenda

European PP Strategic Planning

 Details of the ES in Halina Abramowicz's presentation <u>http://events.fnal.gov/colloquium/events/event/</u> <u>abramowicz-colloq-2018/</u>

Contributions to the European PP Strategic Planning - I

- The organization is handled by the Strategy Secretariat (chaired by H. Abramowicz)
 - The Strategy Secretariat is the recipient of the proposals
- US scientist are invited to submit their proposals through European partners (while other channels are still under consideration)
 - Studies on High-luminosity and High-Energy LHC are developed within CMS
 - The CMS Upgrade Performance Group is providing support and Andreas B. Meyer is responsible for editing the Yellow Report
 - (internal link) https://twiki.cern.ch/twiki/bin/viewauth/CMS/HLandHELHCYR
 - subgroups: WG1 SM (Patrizia Azzi); WG2 Higgs (Maria Cepeda); WG3 BSM (Keith Ulmer);
 WG4 Flavour (Sandra Malvezzi); WG5 Heavy Ions (Yen-Jie Lee)
 - <u>Time scale</u>: June 2018: Plenary meeting, Sept 2018: Full draft chapters (one per WG, 150 pages each), 18 Dec 2018: Submission
 - Studies on High-Energy LHC can also be developed within the FCC Collaboration

Contributions to the European PP Strategic Planning - II

- Studies on FCC (hh, ee, eh)
- Targeted studies have been develop over the course of the past few years in preparation for CDR submission in December 2018
- Details can be found here: <u>https://indico.cern.ch/event/618254/contributions/2833205/attachments/</u>
 <u>1582373/2500981/Mangano-WshopIntro.pdf</u>

Contributions to the European PP Strategic Planning - III

- Studies on FCC (hh, ee, eh)
- "The CDR only contains key physics goals and reach for the FCC, it is a selection of the most outstanding and unique selling points, not a global review" (from M. Mangano)
- <u>Time scale</u>: additional studies can be developed and submitted by December 2018
 - studies available after May 2019 may still be considered
- Contacts for the ES documentation:
 - accelerators Michael Benedikt
 - physics/detectors Michelangelo Mangano
- Studies on the Muon Collider
 - Significant interest in the community
 - Potential platform to be created at CERN
 - On-going studies at FNAL and potential collaboration between FNAL scientists and INFN scientists
 - <u>Time scale</u>: studies can be developed and submitted by December 2018
 - studies available after May 2019 may still be considered
 - <u>Contacts for the ES documentation</u>: Nadia Pastrone (TBC)

Summary

- It is a unique and exciting time for particle physics
 - the exploration of the unknown
- An effective synergy between the intensity and of the energy frontier is essential to maximize our discovery potential
- Fermilab scientists are invited to contribute to the laboratory strategic planning for the decades after 2026 through an active participation in the ES planning and then in the Snowmass/P5 process
- Several Yellow Reports and White Papers & Addenda are foreseen with the ES
 - HL-LHC and HE-LHC
 - FCC: FCC-hh, FCC-ee, FCC-eh
 - Muon Collider
 - [See Dmitri Denisov's presentation for other Reports]
- The Fermilab Strategic Group for Energy Frontier is expected to facilitate the integration of the FNAL Scientists in the ES process
- If you are interested, please do not hesitate to contact us and share your plans at the next meeting on April 3rd

Operation model assumed for the CDR

- Physics goals (see next slides)
 - 150 ab⁻¹ around the Z pole (~ 25 ab⁻¹ at 88 and 94 GeV, 100 ab⁻¹ at 91 GeV)
 - 10 ab⁻¹ around the WW threshold (161 GeV with ±few GeV scan)
 - 5 ab⁻¹ at the HZ cross section maximum (~240 GeV)
 - 1.5 ab⁻¹ at and above the top threshold (a fraction at ~350 GeV, the rest at ~370 GeV)
 - Benchmark run plan with 2 IP and the baseline optics
 - Numbers of years are soft numbers that can be revised in view of the physics panorama at the time

√s (GeV)	Z	ww	HZ	top	M. Benedikt May 2017
Lumi (ab ⁻¹ /year)	15, then 30	4	1	0.3	,
Events/year	1.2×10 ¹²	1.5×10 ⁷	2.0×10 ⁵	2.0×10 ⁵	
Physics goal	150 ab ⁻¹	10 ab^{-1}	5 ab ^{−1}	1.5 ab ⁻¹	
Runtime (years)	6	2	5	5	

200 scheduled physics days per years, Hübner factor ~ 0.6

29 May - 2 June 2017

FCC Week, Berlin

5

Rate comparisons at 8, 14, 100 TeV

	N100	N ₁₀₀ /N ₈	N100/N14
gg→H	16 G	4.2 × 10 ⁴	110
VBF	I.6 G	5.I × I0 ⁴	120
WН	320 M	2.3 × 10 ⁴	70
ZH	220 M	2.8 × 10 ⁴	84
ttH	760 M	29 × 10 ⁴	420
gg→HH	28 M		280

 $N_{100} = \sigma_{100 \text{ TeV}} \times 20 \text{ ab}^{-1}$

 $N_8 = \sigma_{8 \text{TeV}} \times 20 \text{ fb}^{-1}$

 $N_{14} = \sigma_{14 \text{ TeV}} \times 3 \text{ ab}^{-1}$

Statistical precision:

- O(100 500) better w.r.t Run 1
- O(10 20) better w.r.t HL-LHC