

Tools and procedures for data sharing

Michal Duda CERN – TE/MSC – TF IFJ PAN – DAI

Outline

- Tools at CERN
- Section strategies
- Testing facility case
- Carpenter introduction
- Summary

Tools at CERN for storing and sharing a data

Document managers: EDMS & MTF

Engineering Data Management Service & Manufacturing And Test Folder

Systems to store, manage, organize and distribute large amounts of engineering information. Provide traceability of large quantities of complex parts; include part identifiers and manufacturers, workflow tracking capabilities, handling data and documentation about the different steps in the manufacturing and test processes.

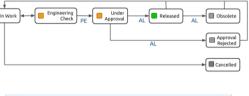
Data/sensor loggers: CALS/Timber

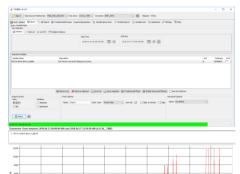
CERN Accelerator Logging Service

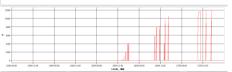
The logging service of close to 1 million pre-defined signals coming from heterogeneous sources. These signals range from data related to core infrastructure such as electricity, to industrial data such as cryogenics and vacuum, to beam related data such as beam positions, currents, losses, etc.

Technical spec & drawings: CDD

CERN Drawings Directory


Web application which manages engineering drawings made either at CERN or in an external company


Shared network drives



What does the other do with their data

Section	Raw data	Res data	Documents
Cryogenic	CALS		
Superconductors	ND & DB	section DB	EDMS
Manufacturing	ND & CDD	website & ND & EDMS/MTF	EDMS/MTF
Mechanical measurements	raw files on ND	res files on ND	
Magnetic measurements	raw files in EDMS	section DB	EDMS/MTF
Cold powering	raw files on ND	res files on ND & section DB	EDMS/MTF

- data preservation is the responsibility of each section
- raw data there is no need for sharing
- res data shared within the collaboration

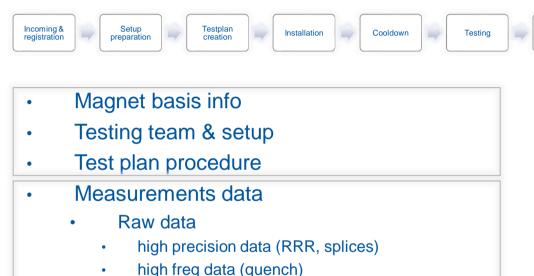
Magnet is a complicated device

Where to look for a data?

- Testing facility needs an input from other sections about
 - Superconductor limits
 - Max allowed HV for insulation test
 - Magnet inductance
 - Details about powering (lmax, dl/dt)
 - Max hotspot temp., quench integral
 - Magnet instrumentation

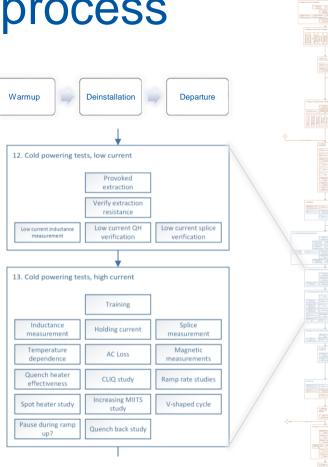
How to share a data?

Many people interested in progress and results

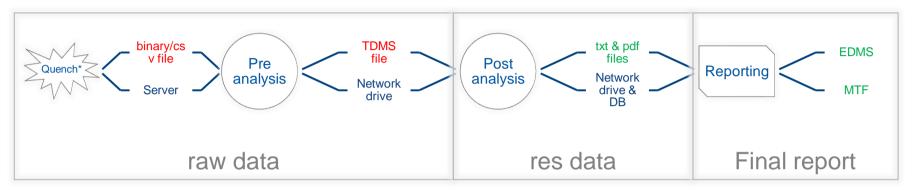


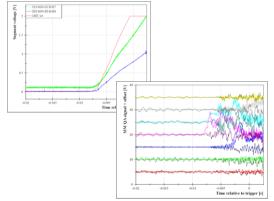
Testing is a complicated process

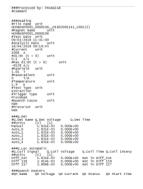
What do we want to store and share?



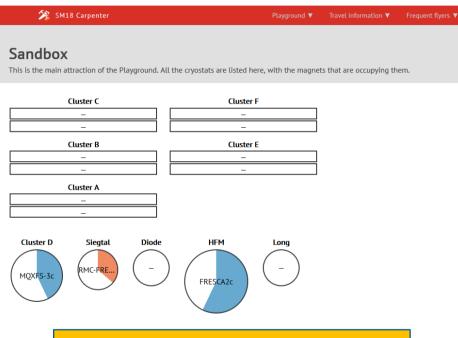
other data (insulation, resistance)


- Results
- Reports





Measurements and analysis



1		Energies	Value	(sate)	Value (manus	0 Eale	Queuch Heaters	Y_86[Y]	1,00 (A)	Hate	
ICMBHSP00	01 0000106	Miles	8.4	42 8.71		MA*2s	Hesterl	948	162	FREOR	
Test Date	2017-Dec-08 12:19	E_est	399	2.25	389.25	M	Jiman	~	1774	LAM	
	2017-Dec-08 12:19	1,1	710	1.13	709.92	kr	Heure?	947	109	ERRO	
alysis Date		Lilia	321	.04	321.82	ы	_nessez				
mperature	4.5 K	E_disc_sum	320	1.89	320.68	W	Heav?	938	154	ERRO	
Current	11.09 kA	Owench Detecti		Voltage (mV)		Time [ms]	Jimes	938	134		
àt (t < 0)	49.68 A/s	Auto 1	100	-99.60		-12.79	_Heater4	931	165	ERRO	
dt (t > 0)	-93.36 kA/s	Anto 2	\dashv			-2.20					
xField	11.18 T		\rightarrow						_	_	
	9 T/m	Auto 3		-1.31	E+03	3.73E-03		Triggers Trigger HF		Trig_Time [n	
laxGradient	0 T/m	Manual	П	- 1	19	-15.17	Trigge		+	0	
		Vtaps Q.Det.	-i	Velter	e [mV]	Time inst		Mec Sw		0	
23			\rightarrow				Trigge	r_PC		0	
	The same	BE117114_BE1171	15 14.83		.83	-14.06	Trigger	Trigger_QH1		0	
		EE11606-EE1160	10		98	-7.65	Trigger		_	0	
			_	_			Trigge		_	0	
100	A STATE OF THE PARTY OF THE PAR	H11702_H1170	23		20	-5.45	Trigge	r_LF		0	
		EE11604-EE1160	×	47	.08	.5.00	Equivalen	Circuit	Value	at 10 n	
		HUNG HUN	. +	-	95	.500	R_Du	ımp	60.0	90 mΩ	
	1000	all no dillo	~	- 10		1,5000	R Ma	gnet	24.7	76 mΩ	
		FEITERFEITE	. Т	162.29		500	L Ma	_	8.15 ml		

Carpenter New MSC-TF database system

https://sm18-carpenter.web.cern.ch

Quality Assurance

Efficient communication between ourselves (i.e. in case of vacation) and other groups (i.e. with cryo team, strain measurements team)

Data processing and storage

Automatic reporting for EDMS/MTF (faster than manual reporting)

Easy statistics and data mining

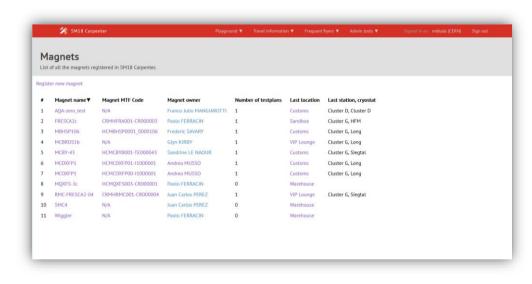
Quality Control

Show what we're doing to interested people in real-time Internal/external users follow-up of activities at SM18 (access for regular and lightweight CERN accounts)

Carpenter main functionalities

- Web browser tool universal and easy access from anywhere (local or remote)
- User management and privileges for controlled access
- All kind of testing data storing place
- Follow-up test tool
- Easy sharing (web link)

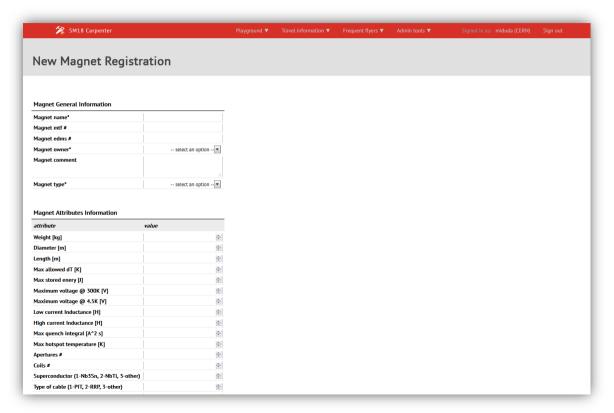
	NAME	Notif	admin	engineer	operator	nechanic	electrician	cryogenist	hierarchy	owner	nser	vicitor
	resp_NAME	z	a	e e	0	m	0	0	ے h	w	u	×
Access to location	resp_ID		a	e	0	m	-	C	n	w	u	١,
access to locatio	ni: Sandbox		37		11	37	37		14		11	
Rooms			У	У	У	У	У	У	У	У	У	
ROUIIS			У	У	У	У	У	У	У	У	У	ľ
			y	y	y	y	У	y	y	y	У	i
FregFlyers			У	У	V	V	У	У	У	У	У	
rreqriyers			y	y	V	y	y	V	V	n	n	Ì
			У	У	У	У	У	У	У	У	У	i
			V		V	y	_	V		n	n	
Individual			_	у		_	У	_	У		_	
maividuai			y v	y V	У	У	y V	y	y v	y n	y n	ľ
					У	У						
Testplan view			y v	У	У	y	У	y	У	У	У	
restpian view		_		У	У				У	У		
			У	y 5	y	y n	y n	n	n	n n	n n	
			У						n		'n	
Departing	<u> </u>	е,о	У		_	n	n	n	n	n		-
Reporting			У	У	У	У	У	У	n	n n	n	
			У	У	У	У	У	У				
Administration			У	У	У	У	У	У	У	У	У	
Administration			У	У	n	n	n	n	n	n	n	1
			У	У	n	n	n	n	n	n	n	1
		Warehouse VIP Lounge Customs Magnets Users Reports Vearly view Magnets Users Reports Access Submit result e Accept result e,o	У	У	n	n	n	n	n	n	n	1
			У	У	n	n	n	n	n	n	n	1
		e	У	n	n	n	n	n	n	n	n	1
			У	У	n	n	n	n	n	n	n	
			У	У	n	n	n	n	n	n	n	1
			У		n	n	n	n	n	n	n	
		,	У		n	n	n	n	n	n	n	1
			У		n	n	n	n	n	n	n	1
		,	У	n	n	n	n	n	n	n	n	
		a,self	У	n	n	n	n	n	n	n	n	_
			У	n	n	n	n	n	n	n	n	1
			У	n	n	n	n	n	n	n	n	1
			У	n	n	n	n	n	n	n	n	1
	Cookie		У	n	n	n	n	n	n	n	n	- 1



Frequent flyers

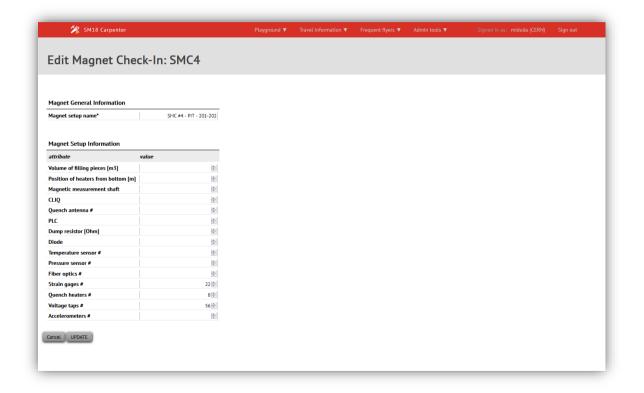
Registration Check-in Testplan Creation

- Magnets
 - Registration
 - Check-in
 - Testplan Creation
- Users

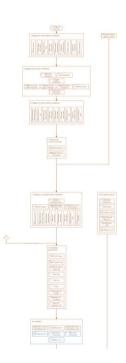


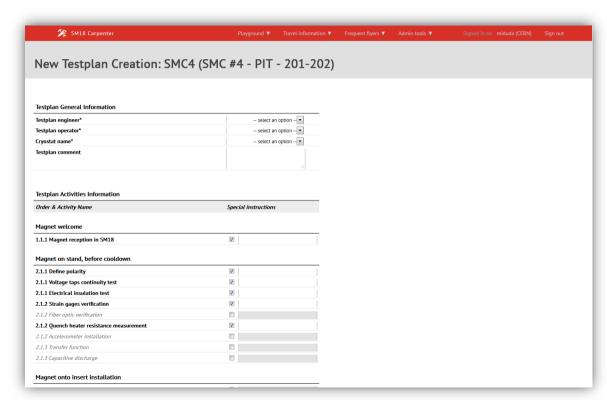
Check-in

Testplan Creation



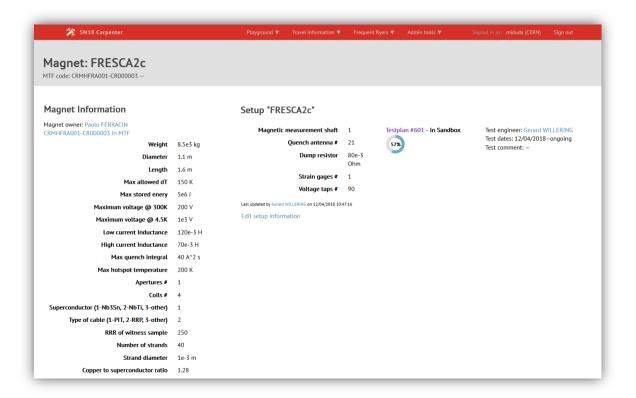
Testplan Creation


Frequent flyers 3

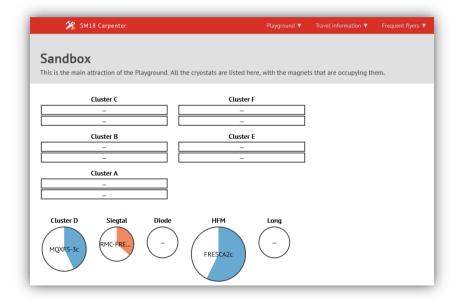


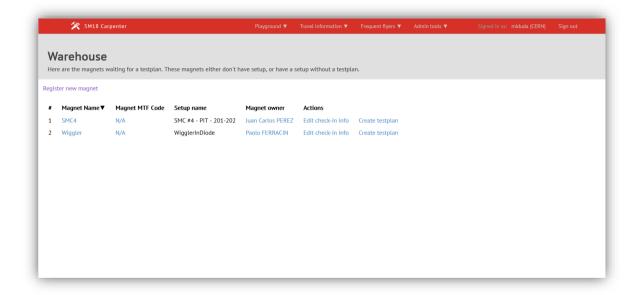
Check-in

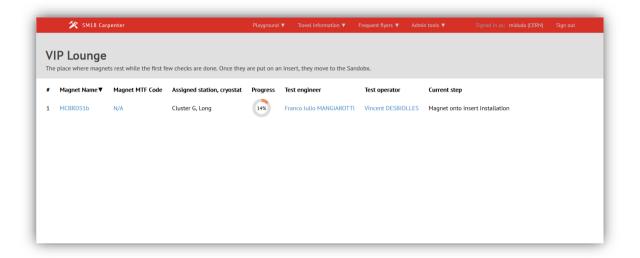
Testplan Creation

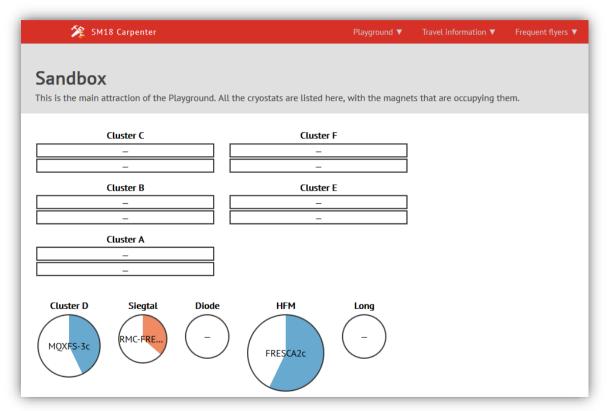


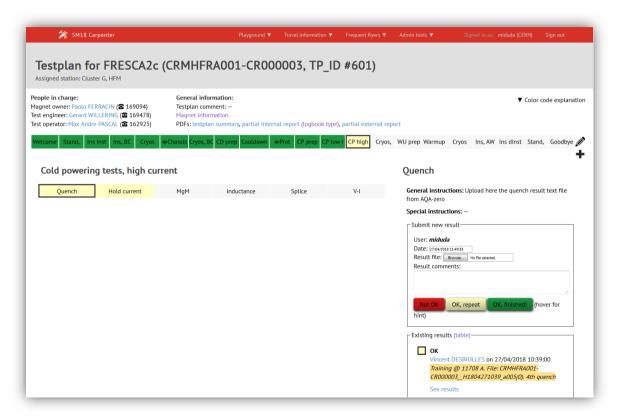
Frequent flyers 4



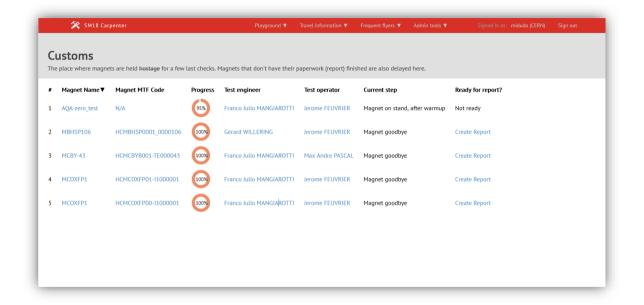

- Actual on-line situation @ testing facility
 - Warehouse
 - VIP Lounge
 - Sandbox
 - Customs

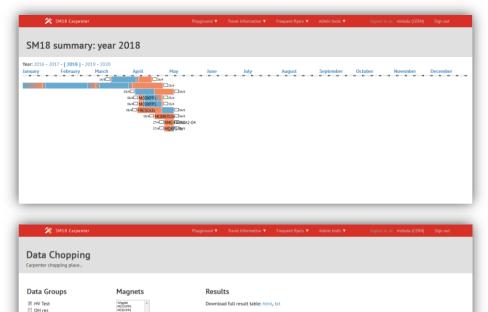






Sandbox





Travel information

- Yearly summary
- Data chopping
- Test reports*

ch	r .													
net Name	Step Name	Hesult ID#	File name	Test Date	Analysis Date	Test Type	Trigger Type	Precursor	Queech Cause	Temperature [K]	Current [A]	etvar (a < a) (a/v)	$Max\;dLAB\;\{t\geq 0\}\;[AA]$	Madfield [T]
00738	Oil swent est, life sives	240	+O#9980L00000_417.00174,44050	STRABLASE	11/04/2018 1917.19	Terros	Note best	ъ	Herteriox organ	45	8127	**	-54969	187
metrics.	Cast assessing latter, high surrests	3404	-048-0700L0000k_407L0009L40040	0410079998	11/94/2018 1011110	Yarrag	News went	***	Montecopy	45	1279	11	6029	1.00
m-sesia	Coll powering most, high current	back	+CHR-07000_000006_+17-201014_+80000	04/12/00/27 11 04/00	15,64,0168 (IRT) 25	Steining	Neproleum	100	Herteriox origin	41	1946	860	490	10.52
mestule.	Consumering many right covers	\$465	-constant many action con-	94109712990	11,04/2018 1017.26	Swing	Telephonents	*	Harracter origin	45	10057	900	4670	68.10
000	Californity ses, Nyhares	385	+O4947001_00008_4171201441_4807()	0412007 H3600	1104/2018 (01.17)	Storag	Peurs send.	%	Honoroomyn	43	1007	500	75%	12.07
moran	Deligoners was signatured	500)	H298197000_000006_H21200206_ABRID	94/12/08/719:56:69	10,04(2008)01137	Terror	Now sect	**	Mechanical origin	93	.0794	100	1984	10.00
mora.	Call passeng sets, high-current	3604	HCH0H2000_00008_H171200712_H409()	94/12/00/21/12/00	11/04/2018 10 (147	Turring	Natural parch	-	Necessary)	45	1000	10.0	000	1195
100 m	Distributing test, high curves	SAIT	10000000,00000_101000000000000000000000	67/12/08/7 (819/08	12/84/3018 1817/49	Teining	Non-pern	Se	Necessiasi origin	45	15235	87	-965	11.18
9407104	Cast passering metry, high success	1400	-CHESTED_SHIPM_40737105,46105	NOTIFICATION	11/04/2018 20 (1.54	Same	Tables sweets	**	Herterior organ	45	11995	962	407	11.07
DOTES.	Coll parents was, high surrent	340	-0400000000000000000000000000000000000	67/12/09/7 12:49/00	17.04320 (0.71)	Terror	Tesrel surch	100	Orokotar Smit	43	11327	962	66	11.46
0107101	(as powered sectivary excess)	5406	HOMESHOOL, 2000/RE_HST(201408_HHSS)	85/12/2007 14:20:00	11/9/2016 19:16:05	Servey	has all switch	761	Service into	45	11100	100	4000	11.40
erorum.	Coli powering sorts, high-current	5481	1085900,0000,970700,4040	\$7,62,0007 M-20100	105-200-2014-11	Sarrey	Negrei gwed	100	Greature and	43	11538	102	401	1141
m-circle	Colo parenty tests, high-survey	7100	-CHRONICANNIA_HITIDITING-40100	97/12/2007 17:40:40	15,64/2018 10:18:00	Terring	Tetoric surrin	**	Consister (mit	45	11142	101	404	11,41
ecrus.	Cold passering series, high survent	1940	HCHBHGROOL,00006N_HC7120E000(HWHAD)	04/43/2007 to 00/00	11/04/2018 001422	Salves	Natural awards	94	Medianisi origin	45	19426	84	4905	11.00
949°) N	(bit sweet set, rife trues	the:	HOMESTON, MINUS , NUTSTANDER, NATURE	86/1/2017 12:29:00	UNIONE UNIX 25	favo-ser	Nestination	101	165	49	13109	941	7949	16.17
and the last	Cattle presenting terms, high current	test	ACHRICATION CHICAGO, MICHIGANIAN AND SEC.	98.50/00/15 et 60	CLERCODAL SELLA DE	Serie str	Telephone month	76	Geologic lead	41	1296	1000	Orbita.	11.00

No data found for HV Test

Download Quench result table: html, txt

Download Hold current result table: html, txt

RRR meas
Prov. Extraction
Low I induct

Low I OH verif

□ Low I splice

☑ Quench

☑ Hold current

□ Inductance

□ Splice

□ AC Loss

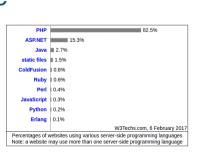
□ V-I

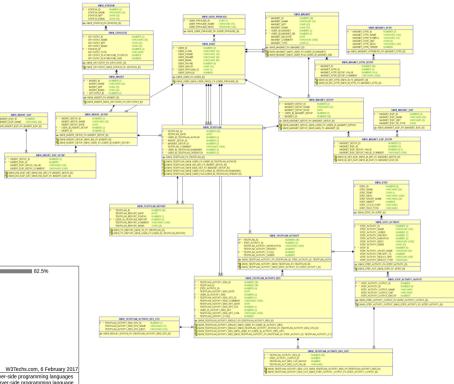
How's it done?

- CERN IT infrastructure
- CERN authentication system
- 2 section developers
- Few months from an idea to working version
- Now maintenance and new functionalities if needed
- System will be used at collaborating facilities (i.e. FREIA) and ongoing projects (i.e. FAIR)

5/8/2018 Document reference

Under a hood


ORACLE®


 Oracle – it is the world's most popular database for running online transaction processing and data warehousing

PHP is a widely-used generalpurpose scripting language that is especially suited for Web development and can be embedded into HTML

5/8/2018

Summary

- Sections are responsible for their data and everyone has a different approach to store it
- Clear solution for final results and reports
- Making a decision how to store one needs to be aware about limitation of the solution (files vs DB)

