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US MDP HTS team/collaborators seek to develop 
practical HTS accelerator magnets
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NHMFL

• 5 T standalone HTS dipole -> 20 T dipole
• Comprehensive tech development from wire to 

magnet tech.
• Approaches: (1) Design and build unique magnets. 

(2) Integrated collaboration with universities and 
industry.

Fermilab + LBNL + NHMFL



The ceiling for HTS magnets is high – 100 T upper critical fields at 4.2 K.  
The key question is how to use them to construct accelerator magnets.

Nb-Ti

Nb3Sn

Bi-2212

REBCO

Tape conductor: How to
use it in a cable form?
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Bi-2212 – how to manage stress for it, 
and perform reliable heat treatments?

REBCO and Bi-2212 – how to detect and protect magnets against a quench? 



For REBCO, our main vehicle is CCT + CORC®

wires
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currentField

• CCT design
o Low conductor stresses
o Excellent geometric field quality

[D. Meyer and R. Flasck, Nuclear Instruments and Methods, vol. 80, no. 2, pp. 339–341, 
1970; AV Gavrilin et al., IEEE TAS, 13(2), 2002; S. Caspi et al., IEEE TAS, 4001804, 2014]

• Compliments to efforts in EU and Japan

CORC® wires (< 3.7 mm diameter)
• Isotropic for magnetics and mechanics
• Flexible (~ 50 mm minimum bending diameter)

[J. D. Weiss et al., SuST, 014002, 2017 and references therein]

X. Wang, H. Higley

Conductor)on)Round)Core)cables)

D.C.$van$der$Laan,$SUST$22,$065013$(2009).$

CORC cable principle: 
Winding many high-temperature superconducting YBCO 
coated conductors from SuperPower in a helical fashion with 
the YBCO under compression around a small former. 

Benefits: 
- Very flexible 
- Very high currents and current densities 
- Mechanically very strong 
- Minimum degradation from cabling (< 10 %) 
- Current sharing between tapes possible 

CORC-Conductor on Round Core

Outline(

1. Introduction to ACT and CORC cables.  
  
2. CORC cables for fusion magnets. 
 
3. Mechanical properties of CORC cables. 
 
4. CORC cables for high-energy physics magnets. 
 
5. Production of long, high-quality CORC cables. 
 
6. CORC cable performance projections. 



We developed methods to wind CORC into 
CCT coils
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Hugh Higley (left) and Andy Lin (right) 
winding a 40-turn mockup coil

X. Wang, H. Higley



We developed methods to make convenient joints between 
CORC wires with acceptable performance

6

Indium foil 
pressure 
contact

Praying-
hand joint

X. Wang, H. Higley



Successfully wound two 40-turn coils for magnet C1, each 
coil used ~ 15 m long CORC® wires, and developed magnet 
assembly procedures
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Inner layer

• Co-wound instrumentation wires to reduce inductive noise in 
voltage-based quench detection

Outer layer

Strongback to 
anchor the coils 
and joints

Return-end joint Lead-end joint

C1 mockup NbTi
cable 
leads

X. Wang



C1 started transition around 3.5 kA in the 
inner layer, 76% expected short-sample limit
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Inner layer

Outer layer

4.2 K

Je = 640 A/mm2

C1 reached 1.2 T at 4.2 K, 104% of the expected performance. 
Reproducible after thermal cycles

X. Wang
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LBNL HTS (2212) subscale magnet program 
topped with new RC-05 results

LBNL 17-strand Rutherford cable

Mullite braided insulation

Subscale coils allow fast-turnaround test of cable and 
magnet-relevant technologies.

9

LBNL RC-1,2,3,5 in FSU OP furnace

2212
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Parameters of LBNL HTS-SC and RC coils show Bi2212 
is now a very relevant high-field conductor
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Ag/Bi-2212 strand

2-layer x 6-turn racetrack coil based on 17-strand 
Rutherford cable (1.44 mm x 7.8 mm, strand diameter = 
0.8 mm)

140 m conductor, 8 m cable 

18 lbs coil thermal mass, 37 cm x 12 cm x 3.1 cm.

50 bar OPHT (@FSU) for RC coils.

RC-01 (5.2 kA, (effective) Jcable=463 A/mm2, (effective) 
wire Je=588 A/mm2.), wax impregnation

RC-02 (5.8 kA, (effective) Jcable=516 A/mm2, (effective) 
wire Je=656 A/mm2.), wax impregnation

RC-03 (6.5 kA, (effective) Jcable=580 A/mm2, (effective) 
wire Je=735 A/mm2.), NHMFL mix 61 impregnation

RC-05 (8.3 kA, (effective) Jcable=740 A/mm2, (effective) 
wire Je=940 A/mm2.), CTD101-K impregnation

RC5 – peak field – 3.33 T
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RC5 reached 8.3 kA and were safely protected.
Je,cable=740 A/mm2 and Je,strand=940 A/mm2 (at 3.4 T) are practical 

current densities for applications
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• (Extrapolated to 20 T) Je,cable=412 A/mm2 and Je,strand=535 A/mm2

• Coil was safely protected against quenches.

• A thermal run-off.

~6.3 mV/ms
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Background 
field
(T)

PMM170123 strand (90% SSL 
assumed)

I–Design 
(kA)

Dipole field in the 
bore
(T)

0 9.8 5.4

15 7.0 18.9

Design 1: 19-strand Rutherford cable, 0.8 mm strand, bore=40 mm, OD=98.4 mm

Redefine what is possible: A route to 20 T dipole - Extending 
CCT to 2212 
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L. Garcia Fajardo, L. Brouwer
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CCT technology is effective at managing stresses in Bi-
2212 coils within limits, even at 20 T

L. Garcia Fajardo, L. Brouwer

Pole

mid-
plane

Stress in one-half turn of Bi-2212 cable for design 1 at 18.9 T 
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RC5 is possible because of advances in powder, wire, cable, and 
OPHT technologies, 

and it also verifies progresses and technological readiness on these fronts.
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RC5 is quite stable against disturbances, 
even at 7925 A => robust against training

• No quench against heater pulses at 1.5 W for 1 s, and 2.5 W for 1 s. 
Finally quenched at 5.3 W for 1 s.

• Heat pulse applied at the turn #1 (straight section, B≈2.5 T).

No 
Quench

No 
Quench

Heat pulses

Quench
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Quench detection and protection at wire Jo of 910 A/mm2 

– Example: A linearly increased current run, coil voltage seems no different from 
those of LTS magnets

t=19.895 s, Vete = 0.011 V

t=19.782 s, Voltage taking off.
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RC5 – E-J characteristics defined with a stair-case run. 
Many resistive, easy to detect signals revealed before the quench 
(global superconducting transition driven by continuous joule heating) 
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The global superconducting transition - Multiple turns turning 
normal makes possible easy quench detection.

18

500 502 504 506 508 510 512 514 516 518 520
-10

0

10

20

30

40

50

60

70

80

90

100

Tu
rn

 v
ol

ta
ge

s 
(µ

V)

Time (sec)

 L2-T6'
 L2-T5'
 L2-T4'
 L2-T3'
 L2-T2'
 L1-T1'
 L1-T2'
 L1-T3'
 L1-T4'
 L1-T5'
 Ramp-turn
 L1-T6'

500 502 504 506 508 510 512 514 516 518 520
1E-6

1E-5

1E-4

1E-3

C
oi

l v
ol

ta
ge

s 
(V

)

Time (sec)

 Vete

 VL1

 VL2

Quench

RC5



Ball park analysis – 1.125 J into the ramp turn within 
~15 s, with the conductor temperature around 14 
K. 
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Another operation case that illustrates high-stability and 
possibility of ~10 µV quench detection.  

RC2
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Noninvasive, fast acoustic sensing technique shown to be promising for 
quench detection on RC3

RC3, potted

Receiver PZT

Transmitter PZT

Marchevsky and Gourlay, 
Appl. Phys. Lett. 110, 012601 (2017);

With M. Marchevsky, LBNL
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Rugged capacitance probing technique promising for monitoring magnet 
operation and quench detection tested on RC coils

With E. Ravaioli (LBNL), M. Marchevsky (LBNL), and 
K. Zhang (IHEP visiting at LBNL)

C+

• Capable of detecting joule heating as small as 10 mW.

C-



2212 wire Je – 940 A/mm2, cable Je - 740 A/mm2, 
cable Iq -8300 A, stable at 7800 A, now achieved in 
LBNL RC5 subscale magnet.
• 2212 conductors are ready for magnets
• Significant wire Jc increase in 2017.

REBCO – CORC wires made into novel CCT 
magnets and successfully tested. 
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Summary



Contributors –
RC5 is a product of successful collaboration between U.S 

national lab, university, and industries.

– K. Zhang, H. Higley, A. Lin, L. Garcia Fajardo, J. Taylor,
M. Turqueti, T. Shen
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– E. Bosque, J. Jiang, U.P. Trociewitz, E.E. Hellstrom,
D.C. Larbalestier

– H. Miao, Y. Huang

– M. White, R. Nesbit, A. Xu, A. Hunt

The LBNL RC5 was made from the wire PMM-170123, fabricated by Bruker OST with new Bi-
2212 powder developed by nGimat LLC (DOE SBIR support) and donated to LBNL.


