New Muon Beam Missing Momentum Experiments @ FNAL $(g-2)_{\mu}$ & Dark Matter

Yoni Kahn, Gordan Krnjaic Nhan Tran, Andrew Whitbeck

arXiv:1803.XXXXX

Precision Science Discussion Mar 20, 2018

Overview & Motivation

1) Model independent test of g-2 anomaly

2) Probe models of muon-philic dark matter

Overview & Motivation

1) Model independent test of g-2 anomaly

2) Probe models of muon-philic dark matter

Muon Anomalous Magnetic Moment

Longstanding ~ $3.7 - 4.1\sigma$ anomaly in $(g - 2)_{\mu}$ Theory updates have only widened disagreement

$$a_{\mu} \equiv a_{\mu}(\text{obs}) - a_{\mu}(\text{SM}) = (28.8 \pm 8.0) \times 10^{-10}$$

Mangano, Keshavarzi, Nomura, Teubner 1802.02995

$$a_{\mu} \equiv a_{\mu}(\text{obs}) - a_{\mu}(\text{SM}) = (31.3 \pm 7.7) \times 10^{-10}$$

Jegerlehner 1705.00263

Remains a great hint of possible new physics Soon FNAL g-2 experiment will shrink error bars

Many popular new physics *models* are now ruled out...

Weak scale models also under tension (e.g. MSSM) Conclusions based on **first-generation** measurements

Motivates better understanding muon-philic interactions

Best viable BSM explanation: new muon-philic particles

New particle couples to muons & decays invisibly How do we directly test this scenario?

Basic Setup: muon beam incident on fixed target

Kahn, GK, Tran, Whitbeck 1803.XXXX Gninenko, Krasnikov, Matveev 1412.1400

Chen, Pospelov, Zhong 1701.07437

Generic test of light new particles in $(g-2)_{\mu}$

Phase $1 \sim 10^{10} \,\mathrm{MOT}$

Phase $2 \sim 10^{13} \,\mathrm{MOT}$

Overview & Motivation

1) Model independent test of g-2 anomaly

2) Probe models of muon-philic dark matter

Zeroth Order Outstanding Problems

Also Quantum Gravity

DM Prognosis?

Bad news: DM-SM interactions are not obligatory If nature is unkind, we may never know the right scale

DM Prognosis?

Bad news: DM-SM interactions are not obligatory If nature is unkind, we may never know the right scale

Good news: most *discoverable* DM candidates are in thermal equilibrium with us in the early universe

Why is this good news?

Thermal Equilibrium Advantage #0: Hard to avoid

If interaction rate exceeds Hubble expansion

$$\mathcal{L}_{\text{eff}} = \frac{g^2}{\Lambda^2} (\bar{\chi}\gamma^{\mu}\chi)(\bar{f}\gamma_{\mu}f)$$

$$H \sim n\sigma v \implies \frac{T^2}{m_{Pl}} \sim \frac{g^2 T^5}{\Lambda^4} \Big|_{T=m_{\chi}}$$

Equilibrium is easily achieved in the early universe if

$$g \gtrsim 10^{-8} \left(\frac{\Lambda}{10 \,\mathrm{GeV}}\right)^2 \left(\frac{\mathrm{GeV}}{m_{\chi}}\right)^{3/2}$$

Applies to nearly all discoverable models (except axions)

Thermal Equilibrium Advantage #1: Minimum Annihilation Rate

DM is overproduced, need to annihilate away the excess!

Griest et. al. 1992

Decades of direct detection: null results

Cushman et al. arXiv:1310.8327

Null LHC results cast doubt on weak scale SUSY

Where else should we look?

Light DM is different!

LDM must be a SM singlet Otherwise would have been discovered (LEP etc.)

LDM needs new forces

Would be overproduced without light "mediators"

How do we look for new forces?

Emerging New Program of Light DM Experiments

... but all probe electron & proton couplings!

 $\nu_{\mu,\tau}$ Major Blind Spot: Muon-Philic Dark "Mediators"

New force couple DM to muons, sets relic abundance

$$\mathcal{L} \supset Z_{\nu}' \left(g_{\mu} \bar{\mu} \gamma^{\nu} \mu + g_{\chi} \bar{\chi} \gamma^{\nu} \chi \right)$$

e.g. — gauged U(1) muon-tau number, no electron coupling

(mediator can be same Z' responsible for g-2 anomaly)

Same setup as before: radiate missing energy

Tests same interaction that sets relic abundance

Cover nearly all predictive thermal DM models

Cover nearly all predictive thermal DM models

Including common g-2 regions

Summary

Muonic forces poorly constrained

New fixed-target missing momentum experiment Trigger on large missing energy, veto SM particles Utilize existing muon sources beams at Fermilab

Phase 1: 1e10 MOT robustly test g-2 BSMPhase 2: 1e13 MOT cover thermal dark matter