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PREFACE

For 2017 retreat, presented work on fixed target experiments for dark 
matter searches


Focus on electron beams

https://indico.fnal.gov/event/14349/


Extend the program

Opportunities in muon physics (Gordan)

Takes advantage of muon beam capabilities at FTBF and SeaQuest/
Neutrino line
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https://indico.fnal.gov/event/14349/
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SCENARIOS

Phase 1: MTest “Shovel ready”  
1010 Muons on target, 50 X0 target

~100 days with 105 muons per spill


Phase 2: NM4, Seaquest 
1013 Muons on target, 50 X0 target

3 years with 107 muons per spill
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Figure 8. Parameter space for predictive thermal DM whose abundance arises through direct annihilation

to SM particles via s-channel Z0
exchange.The vertical axis is the product of couplings that sets the relic

abundance for a given choice of DM mass and spin (see Appendix A). Also plotted are constraints from the

neutrino trident process, as well as projected limits from a similar proposal at the CERN SPS [? ].

electron beams, and thus can be mitigated with relatively mild background rejection; with veto
ine�ciencies ✏⇡ . 0.01, ✏n . 0.1, these processes will give less than 1 fake event per 1015 incident
muons. This informs the detector performance requirements for Phase 2.

• Muon pair production: µN ! µNµ+µ� or µN ! µN�, �N ! Nµ+µ�. This rate is
negligibly small for Phase 1 luminosity, but is the dominant reducible background for the Phase
2 muon beam. Indeed, the kinematics of the Bethe-Heitler “trident” diagram are peaked in the
region of phase space where one muon is produced collinear with the incoming muon [? ], but
this background is reducible since the majority of the time the remaining muon can be tagged,
and/or the presence of two MIPs can be seen in the tracker. We discuss the performance of the
tracker further in Sec. 5.1.2, and include a detailed discussion of the pair production background
in Appendix B.

4.2.3 Irreducible backgrounds

• Irreducible neutrino pair production: µN ! µN⌫⌫. The only single process resulting in
real missing energy relevant for muon beams is Z-mediated neutrino pair production, but the
small cross section at 15 GeV beam energies renders this rate negligible even for Phase 2.

• Moller + CCQE: µe ! µe, ep ! n⌫e. For this process, the incident muon scatters a target
electron, which acquires a large fraction of the incident beam energy and then undergoes a
charged-current quasi-elastic (CCQE) scatter o↵ a proton. The resulting final state contains
one low energy muon and a majority of the beam energy carried away by the n and ⌫. If the
neutron is not vetoed, this process is an irreducible background, whose probability per muon is
conservatively estimated to be

Pµe!µe+CCQE = (↵ neGF `)2
mp

2me
log

Eµ

Ecut
' 5 ⇥ 10�15, (4.1)
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THOUGHTS

LDMX-e is the most promising detector concept to search for light MeV-GeV 
thermal dark matter candidates


US DOE Cosmic Visions Whitepaper: https://arxiv.org/abs/1707.04591

Fixed target electron beam experiment


With small modifications to the detector target region, LDMX-μ would perform 
high impact muon BSM physics


New physics could couple preferentially to muons

Does not need full LDMX-e calorimeters

At testbeam, could already complement g-2 phase space and be a 
commissioning run for LDMX-e


Longer term, could move to the SeaQuest beamline and probe thermal relic 
benchmarks in muon-phillic scenarios

Timelines are fluid, 


consider both LDMX-e/μ where for each could have phases 1/2
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https://arxiv.org/abs/1707.04591

