Beamline and detector for LDMX-µ

Gordan Krnjaic, Nhan Tran, Andrew Whitbeck [Fermilab] Yonatan Kahn [Princeton]

Many thanks for important discussions: Gerald Annala, Mary Convery, D. Jensen, James Morgan, Mandy Rominsky, Diktys Stratakis, Adam Watts et al.

PREFACE

For 2017 retreat, presented work on fixed target experiments for dark matter searches

Focus on electron beams https://indico.fnal.gov/event/14349/

Extend the program Opportunities in muon physics (Gordan) Neutrino line

Takes advantage of muon beam capabilities at FTBF and SeaQuest/

LDMX-µ DETECTOR CONCEPT

LDMX-µ DETECTOR CONCEPT

Signal

LDMX-µ DETECTOR CONCEPT

Full GEANT study of 15 GeV muons incident on 40X₀ target

EM+Had momentum leaving the back of the target (MeV)

SCENARIOS

Phase 1: MTest "Shovel ready" 10¹⁰ Muons on target, 50 X₀ target ~100 days with 10⁵ muons per spill

Phase 2: NM4, Seaquest

10¹³ Muons on target, 50 X₀ target 3 years with 10⁷ muons per spill

THOUGHTS

LDMX-e is the most promising detector concept to search for light MeV-GeV thermal dark matter candidates US DOE Cosmic Visions Whitepaper: <u>https://arxiv.org/abs/1707.04591</u> Fixed target *electron* beam experiment

With small modifications to the detector target region, LDMX-µ would perform high impact muon BSM physics New physics could couple preferentially to muons Does not need full LDMX-e calorimeters At testbeam, could already complement g-2 phase space and be a commissioning run for LDMX-e

Longer term, could move to the SeaQuest beamline and probe thermal relic benchmarks in muon-phillic scenarios Timelines are fluid,

consider both LDMX-e/ μ where for each could have phases 1/2

