Shower Reconstruction

Yun-Tse Tsai (SLAC) ICARUS Collaboration Meeting May 14th, 2018

Electromagnetic Showers

- Signature of ν_e appearance
- Background from beam intrinsic ν_{e} and π^{0} production

Important to reconstruct and characterize EM showers

EM Showers at SBN

 BNB ν_μ beam: neutrino energy peak around 800 MeV

 NuMI v_µ beam: neutrino energy peak around 8 GeV (on-axis); different energy spectrum for ICARUS (off-axis)

EM Showers at SBN

Shower Characteristics

- Geometric parameters
 - Starting point
 - Direction
 - Opening angle, length
- Calorimetric parameters
 - Energy
- Combined
 - dE/dx; particle identification
- Systematic uncertainty

Impact on Particle ID

- Electron-Photon separation: impacts from shower starting points, directions, calorimetry
- Track-Shower separation: impacts from opening angles, calorimetry, etc.

Main Issues on Shower Reco

- Currently, the most significant issue is the energy reconstruction of EM showers.
 - Hit finding
 - Identify hits from complicated topologies
 - Identify hits from low energy deposits
 - Pattern recognition/clustering
 - Determine hits originating from a EM shower
 - Impacts from bad wires, Bremsstrahlung, etc.
 - Energy correction
 - Electron-ion recombination effect
 - Containment

To Merge or Not To Merge

To Merge or Not To Merge

To Merge or Not To Merge

Energy Resolution

(Deposited E - Reconstructed E) / (Deposited E)

Energy Resolution Y Plane

Study on Recombination

- Quantify the recombination effect on shower energy reconstruction
- For electron showers with different energy, 200MeV to 2GeV, compare charges collected with the recombination effect to those without
- Conclude that a constant correction factor for the recombination effect is good

Outlook

- Deep learning technique to categorize each pixel into tracks or showers and thereby recover charges
- Understand charge distribution of each type of EM particles and correct for
 - residual hit finding and clustering inefficiency
 - partial contained showers: direction, energy, etc.

Categorizing each pixel into tracks vs showers

Summary

- Reconstructing EM showers is relevant to ve appearance measurements.
- Shower characteristics include geometric, calorimetric, and combined parameters.
 - Impacts on particle identification.
- Current main issues focus on shower energy reconstruction.
 - Studies and improvements underway.
- "Informal" meetings across SBN on 10:30am CDT Wednesdays, sharing the previous ICARUS (Christian) and MicroBooNE (Yun-Tse) experience. Welcome to join!