Status of CRT Simulation

Chris Hilgenberg Colorado State University

ICARUS Collaboration Meeting Fermilab, 14 May 2018

Previous Simulation Work

- Cosmic simulation (generation/propagation) performed for SBN proposal via FLUKA
- Initial analysis presented in internal note *Cosmic Ray Tagger*. M. Nessi, U. Kose, P.R. Sala, et al. 20 May 2015
- Planned CRT geometry unknown at the time, CRT approximated as twolayer slabs of plastic scintillator providing 4π coverage

CRT Subsystems

X-Y config

- Three systems based on polystyrene scintillator and WLS fibers
- Collaborative effort between Europe and US
 - CERN & Bologna constructing new modules similar to SBND design
 - Repurposed MINOS FD scintillator modules with a new SiPM based readout by FNAL and CSU, mechanical installation planned for this summer
 - Re-use of Double Chooz veto modules by FNAL in collaboration with UChicago and VT, installed last summer
- Extra complications for DAQ, simulation and analysis

*Photo credit: Justin Tilman

X-X config

Geometry

- Note actual system does not provide 4π coverage!
 - Some gaps in sloped top and sides may be covered with spare side modules (not considered here)
 - Sparse coverage on bottom due to installation constraints
- CRT, cryostats, TPCs, overburden, and detector hall described in gdml
- Each CRT module approximated as polystyrene strips contained in an Al box according to known dimensions
- Current CRT description will need to be updated once final module positions are known

Outer cryostat CRT strips

Cosmic Simulation with CORSIKA

- 3m-thick concrete overburden
- Same flux files used in current uBooNE and SBND simulations
- Buffer box (distance beyond cryostat): [-500.0, 500.0, -300.0, 300.0, -600.0, 600.0] cm
- Sample time: 3.3ms ~ 3 drift times
- CMC model used
- Elevation of primary surface w.r.t. cryostat center: 18m
- For first studies, using filter after generation stage to select only primary muons entering cryostat

Geant4 Stage Validation (in Progress)

y

- Use particle gun and cosmics for sanity checks
- Reproduce previous studies based on older simulation
 - Rates of cosmic muons in CRT, TPC
 - Rates of cosmic γ's in different timing, topology groups outlined in SBN proposal
 - CRT efficiencies

RegEnterXYZT[][1]:RegEnterXYZT[][0] {Region>12}

Comparison to Previous Results

LAr Volume	Mu Rate (kHz)
All	24.1
Inactive only	8.7
Active	15.5

Previous result:

11 kHz in fiducial volume 35 kHz in CRT

CRT Geometric Efficiency			
# CRT Strips	IV Only (%)	AV (%)	
> 0	99.2	99.5	
> 1	98.2	98.6	
> 2	44.7	42.1	
> 3	34.9	34.8	
Vector	34.9	34.5	

Previous result:

99.9% hit at least one module 78% give vector (4π coverage) 15% give vector (no bottom)

Muon Crossing AV w/ or w/o gamma			
CRT Region	Fraction (%)	Prev. Result (%)	
Тор	65.0	66	
Back	1.7	1	
Front	2.3	3	
Left	9.4	8	
Right	10.0	8	
Sloping Lateral	8.8	12	
Sloping Front	1.9	2	
Sloping Back	0.8	0.4	
Bottom	0.2	0	

Observe good agreement between previous and current results!

Near-Term Goals

- Finish simulation validation through G4 stage
- Reproduce and extend previous studies on cosmogenic γ 's
- Study possible trigger configurations of interest for acquiring background and calibration samples, useful for DAQ group
- Implement detector response for each CRT subsystem
- Develop CRT reconstruction tools for cosmic muon removal

Longer-Term Goals

- Develop CRT-PMT-TPC event matching tools
- Investigate use of CRT in tagging "dirt" events, impact on backgrounds
- Validate CRT response with real CRT data once installed, commissioned
- Work with Tom Brooks from SBND to keep CRT related code as detector agnostic as practically possible
- Determine form of CRT data product (to be used with simulated and real data)